Sobolev Spaces with Applications to Elliptic Partial Differential Equations /
Sobolev spaces play an outstanding role in modern analysis, in particular, in the theory of partial differential equations and its applications in mathematical physics. They form an indispensable tool in approximation theory, spectral theory, differential geometry etc. The theory of these spaces is...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Autor Corporativo: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2011.
|
Edición: | 2nd ed. 2011. |
Colección: | Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics,
342 |
Temas: | |
Acceso en línea: | Texto Completo |
Tabla de Contenidos:
- Introduction
- 1 .Basic Properties of Sobolev Spaces
- 2 .Inequalities for Functions Vanishing at the Boundary
- 3.Conductor and Capacitary Inequalities with Applications to Sobolev-type Embeddings
- 4.Generalizations for Functions on Manifolds and Topological Spaces
- 5.Integrability of Functions in the Space L 1/1(Ω)
- 6.Integrability of Functions in the Space L 1/p (Ω)
- 7.Continuity and Boundedness of Functions in Sobolev Spaces
- 8.Localization Moduli of Sobolev Embeddings for General Domains
- 9.Space of Functions of Bounded Variation
- 10.Certain Function Spaces, Capacities and Potentials
- 11 Capacitary and Trace Inequalities for Functions in Rn with Derivatives of an Arbitrary Order.-12.Pointwise Interpolation Inequalities for Derivatives and Potentials
- 13.A Variant of Capacity
- 14.-Integral Inequality for Functions on a Cube
- 15.Embedding of the Space L l/p(Ω) into Other Function Spaces
- 16.Embedding L l/p(Ω) ⊂ W m/r(Ω).-17.Approximation in Weighted Sobolev Spaces.-18.Spectrum of the Schrödinger operator and the Dirichlet Laplacian
- References
- List of Symbols
- Subject Index
- Author Index.