Cargando…

Multicomponent Interfacial Transport Described by the Square Gradient Model during Evaporation and Condensation /

A thermodynamically consistent description of the transport across interfaces in mixtures has for a long time been an open issue. This research clarifies that the interface between a liquid and a vapor in a mixture is in local equilibrium during evaporation and condensation. It implies that the ther...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Glavatskiy, Kirill (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Colección:Springer Theses, Recognizing Outstanding Ph.D. Research,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-15266-5
003 DE-He213
005 20220126104736.0
007 cr nn 008mamaa
008 110117s2011 gw | s |||| 0|eng d
020 |a 9783642152665  |9 978-3-642-15266-5 
024 7 |a 10.1007/978-3-642-15266-5  |2 doi 
050 4 |a QD450-882 
072 7 |a PNR  |2 bicssc 
072 7 |a SCI013050  |2 bisacsh 
072 7 |a PNR  |2 thema 
082 0 4 |a 541  |2 23 
100 1 |a Glavatskiy, Kirill.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Multicomponent Interfacial Transport  |h [electronic resource] :  |b Described by the Square Gradient Model during Evaporation and Condensation /  |c by Kirill Glavatskiy. 
250 |a 1st ed. 2011. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2011. 
300 |a XVIII, 174 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5061 
505 0 |a Introduction -- Equilibrium square gradient model -- Non-equilibrium continuous description -- Numerical solution for the binary mixture -- Local equilibrium of the Gibbs surface for the two-phase -- Binary mixture -- From continuous to discontinuous description -- Surface transfer coefficients for the binary mixture -- Integral relations for the surface transfer coefficients -- Conclusions and perspectives. 
520 |a A thermodynamically consistent description of the transport across interfaces in mixtures has for a long time been an open issue. This research clarifies that the interface between a liquid and a vapor in a mixture is in local equilibrium during evaporation and condensation. It implies that the thermodynamics developed for interfaces by Gibbs can be applied also away from equilibrium, which is typically the case in reality. A description of phase transitions is of great importance for the understanding of both natural and industrial processes. For example, it is relevant for the understanding of the increase of CO2 concentration in the atmosphere, or improvements of efficiency in distillation columns. This excellent work of luminescent scientific novelty has brought this area a significant step forward. The systematic documentation of the approach will facilitate further applications of the theoretical framework to important problems. 
650 0 |a Physical chemistry. 
650 0 |a Thermodynamics. 
650 0 |a Chemistry, Technical. 
650 0 |a Heat engineering. 
650 0 |a Heat transfer. 
650 0 |a Mass transfer. 
650 1 4 |a Physical Chemistry. 
650 2 4 |a Thermodynamics. 
650 2 4 |a Industrial Chemistry. 
650 2 4 |a Engineering Thermodynamics, Heat and Mass Transfer. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642152658 
776 0 8 |i Printed edition:  |z 9783642266973 
776 0 8 |i Printed edition:  |z 9783642152672 
830 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5061 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-15266-5  |z Texto Completo 
912 |a ZDB-2-CMS 
912 |a ZDB-2-SXC 
950 |a Chemistry and Materials Science (SpringerNature-11644) 
950 |a Chemistry and Material Science (R0) (SpringerNature-43709)