Cargando…

Symmetries of Compact Riemann Surfaces

This monograph deals with symmetries of compact Riemann surfaces. A symmetry of a compact Riemann surface S is an antianalytic involution of S. It is well known that Riemann surfaces exhibiting symmetry correspond to algebraic curves which can be defined over the field of real numbers. In this monog...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Bujalance, Emilio (Autor), Cirre, Francisco Javier (Autor), Gamboa, José Manuel (Autor), Gromadzki, Grzegorz (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2010.
Edición:1st ed. 2010.
Colección:Lecture Notes in Mathematics, 2007
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-14828-6
003 DE-He213
005 20220127132729.0
007 cr nn 008mamaa
008 100929s2010 gw | s |||| 0|eng d
020 |a 9783642148286  |9 978-3-642-14828-6 
024 7 |a 10.1007/978-3-642-14828-6  |2 doi 
050 4 |a QA331.7 
072 7 |a PBKD  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBKD  |2 thema 
082 0 4 |a 515.9  |2 23 
100 1 |a Bujalance, Emilio.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Symmetries of Compact Riemann Surfaces  |h [electronic resource] /  |c by Emilio Bujalance, Francisco Javier Cirre, José Manuel Gamboa, Grzegorz Gromadzki. 
250 |a 1st ed. 2010. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2010. 
300 |a XX, 164 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2007 
505 0 |a Preliminaries -- On the Number of Conjugacy Classes of Symmetries of Riemann Surfaces -- Counting Ovals of Symmetries of Riemann Surfaces -- Symmetry Types of Some Families of Riemann Surfaces -- Symmetry Types of Riemann Surfaces with a Large Group of Automorphisms. 
520 |a This monograph deals with symmetries of compact Riemann surfaces. A symmetry of a compact Riemann surface S is an antianalytic involution of S. It is well known that Riemann surfaces exhibiting symmetry correspond to algebraic curves which can be defined over the field of real numbers. In this monograph we consider three topics related to the topology of symmetries, namely the number of conjugacy classes of symmetries, the numbers of ovals of symmetries and the symmetry types of Riemann surfaces. 
650 0 |a Functions of complex variables. 
650 0 |a Algebraic geometry. 
650 0 |a Group theory. 
650 0 |a Topology. 
650 1 4 |a Functions of a Complex Variable. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Topology. 
700 1 |a Cirre, Francisco Javier.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Gamboa, José Manuel.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Gromadzki, Grzegorz.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642148279 
776 0 8 |i Printed edition:  |z 9783642148293 
830 0 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2007 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-14828-6  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)