|
|
|
|
LEADER |
00000nam a22000005i 4500 |
001 |
978-3-642-14700-5 |
003 |
DE-He213 |
005 |
20220112190937.0 |
007 |
cr nn 008mamaa |
008 |
110126s2011 gw | s |||| 0|eng d |
020 |
|
|
|a 9783642147005
|9 978-3-642-14700-5
|
024 |
7 |
|
|a 10.1007/978-3-642-14700-5
|2 doi
|
050 |
|
4 |
|a QC19.2-20.85
|
072 |
|
7 |
|a PHU
|2 bicssc
|
072 |
|
7 |
|a SCI040000
|2 bisacsh
|
072 |
|
7 |
|a PHU
|2 thema
|
082 |
0 |
4 |
|a 530.15
|2 23
|
100 |
1 |
|
|a Eschrig, Helmut.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
245 |
1 |
0 |
|a Topology and Geometry for Physics
|h [electronic resource] /
|c by Helmut Eschrig.
|
250 |
|
|
|a 1st ed. 2011.
|
264 |
|
1 |
|a Berlin, Heidelberg :
|b Springer Berlin Heidelberg :
|b Imprint: Springer,
|c 2011.
|
300 |
|
|
|a XII, 390 p. 60 illus.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Lecture Notes in Physics,
|x 1616-6361 ;
|v 822
|
505 |
0 |
|
|a Introduction -- Topology -- Manifolds -- Tensor Fields -- Integration, Homology and Cohomology -- Lie Groups -- Bundles and Connections -- Parallelism, Holonomy, Homotopy and (Co)homology -- Riemannian Geometry -- Compendium.
|
520 |
|
|
|a A concise but self-contained introduction of the central concepts of modern topology and differential geometry on a mathematical level is given specifically with applications in physics in mind. All basic concepts are systematically provided including sketches of the proofs of most statements. Smooth finite-dimensional manifolds, tensor and exterior calculus operating on them, homotopy, (co)homology theory including Morse theory of critical points, as well as the theory of fiber bundles and Riemannian geometry, are treated. Examples from physics comprise topological charges, the topology of periodic boundary conditions for solids, gauge fields, geometric phases in quantum physics and gravitation.
|
650 |
|
0 |
|a Mathematical physics.
|
650 |
1 |
4 |
|a Mathematical Methods in Physics.
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer Nature eBook
|
776 |
0 |
8 |
|i Printed edition:
|z 9783642146992
|
776 |
0 |
8 |
|i Printed edition:
|z 9783642147012
|
830 |
|
0 |
|a Lecture Notes in Physics,
|x 1616-6361 ;
|v 822
|
856 |
4 |
0 |
|u https://doi.uam.elogim.com/10.1007/978-3-642-14700-5
|z Texto Completo
|
912 |
|
|
|a ZDB-2-PHA
|
912 |
|
|
|a ZDB-2-SXP
|
912 |
|
|
|a ZDB-2-LNP
|
950 |
|
|
|a Physics and Astronomy (SpringerNature-11651)
|
950 |
|
|
|a Physics and Astronomy (R0) (SpringerNature-43715)
|