Cargando…

Topology and Geometry for Physics

A concise but self-contained introduction of the central concepts of modern topology and differential geometry on a mathematical level is given specifically with applications in physics in mind. All basic concepts are systematically provided including sketches of the proofs of most statements. Smoot...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Eschrig, Helmut (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Colección:Lecture Notes in Physics, 822
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-14700-5
003 DE-He213
005 20220112190937.0
007 cr nn 008mamaa
008 110126s2011 gw | s |||| 0|eng d
020 |a 9783642147005  |9 978-3-642-14700-5 
024 7 |a 10.1007/978-3-642-14700-5  |2 doi 
050 4 |a QC19.2-20.85 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
072 7 |a PHU  |2 thema 
082 0 4 |a 530.15  |2 23 
100 1 |a Eschrig, Helmut.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Topology and Geometry for Physics  |h [electronic resource] /  |c by Helmut Eschrig. 
250 |a 1st ed. 2011. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2011. 
300 |a XII, 390 p. 60 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Physics,  |x 1616-6361 ;  |v 822 
505 0 |a Introduction -- Topology -- Manifolds -- Tensor Fields -- Integration, Homology and Cohomology -- Lie Groups -- Bundles and Connections -- Parallelism, Holonomy, Homotopy and (Co)homology -- Riemannian Geometry -- Compendium. 
520 |a A concise but self-contained introduction of the central concepts of modern topology and differential geometry on a mathematical level is given specifically with applications in physics in mind. All basic concepts are systematically provided including sketches of the proofs of most statements. Smooth finite-dimensional manifolds, tensor and exterior calculus operating on them, homotopy, (co)homology theory including Morse theory of critical points, as well as the theory of fiber bundles and Riemannian geometry, are treated. Examples from physics comprise topological charges, the topology of periodic boundary conditions for solids, gauge fields, geometric phases in quantum physics and gravitation. 
650 0 |a Mathematical physics. 
650 1 4 |a Mathematical Methods in Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642146992 
776 0 8 |i Printed edition:  |z 9783642147012 
830 0 |a Lecture Notes in Physics,  |x 1616-6361 ;  |v 822 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-14700-5  |z Texto Completo 
912 |a ZDB-2-PHA 
912 |a ZDB-2-SXP 
912 |a ZDB-2-LNP 
950 |a Physics and Astronomy (SpringerNature-11651) 
950 |a Physics and Astronomy (R0) (SpringerNature-43715)