Cargando…

The Analysis of Fractional Differential Equations An Application-Oriented Exposition Using Differential Operators of Caputo Type /

Fractional calculus was first developed by pure mathematicians in the middle of the 19th century. Some 100 years later, engineers and physicists have found applications for these concepts in their areas. However there has traditionally been little interaction between these two communities. In partic...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Diethelm, Kai (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2010.
Edición:1st ed. 2010.
Colección:Lecture Notes in Mathematics, 2004
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-14574-2
003 DE-He213
005 20220116151151.0
007 cr nn 008mamaa
008 100825s2010 gw | s |||| 0|eng d
020 |a 9783642145742  |9 978-3-642-14574-2 
024 7 |a 10.1007/978-3-642-14574-2  |2 doi 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
072 7 |a PBKJ  |2 thema 
082 0 4 |a 515.35  |2 23 
100 1 |a Diethelm, Kai.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 4 |a The Analysis of Fractional Differential Equations  |h [electronic resource] :  |b An Application-Oriented Exposition Using Differential Operators of Caputo Type /  |c by Kai Diethelm. 
250 |a 1st ed. 2010. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2010. 
300 |a VIII, 247 p. 10 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2004 
505 0 |a Fundamentals of Fractional Calculus -- Riemann-Liouville Differential and Integral Operators -- Caputo's Approach -- Mittag-Leffler Functions -- Theory of Fractional Differential Equations -- Existence and Uniqueness Results for Riemann-Liouville Fractional Differential Equations -- Single-Term Caputo Fractional Differential Equations: Basic Theory and Fundamental Results -- Single-Term Caputo Fractional Differential Equations: Advanced Results for Special Cases -- Multi-Term Caputo Fractional Differential Equations. 
520 |a Fractional calculus was first developed by pure mathematicians in the middle of the 19th century. Some 100 years later, engineers and physicists have found applications for these concepts in their areas. However there has traditionally been little interaction between these two communities. In particular, typical mathematical works provide extensive findings on aspects with comparatively little significance in applications, and the engineering literature often lacks mathematical detail and precision. This book bridges the gap between the two communities. It concentrates on the class of fractional derivatives most important in applications, the Caputo operators, and provides a self-contained, thorough and mathematically rigorous study of their properties and of the corresponding differential equations. The text is a useful tool for mathematicians and researchers from the applied sciences alike. It can also be used as a basis for teaching graduate courses on fractional differential equations. 
650 0 |a Differential equations. 
650 0 |a Integral equations. 
650 0 |a Mathematical analysis. 
650 1 4 |a Differential Equations. 
650 2 4 |a Integral Equations. 
650 2 4 |a Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642145735 
776 0 8 |i Printed edition:  |z 9783642145759 
830 0 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2004 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-14574-2  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)