Learning to Rank for Information Retrieval
Due to the fast growth of the Web and the difficulties in finding desired information, efficient and effective information retrieval systems have become more important than ever, and the search engine has become an essential tool for many people. The ranker, a central component in every search engin...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Autor Corporativo: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2011.
|
Edición: | 1st ed. 2011. |
Temas: | |
Acceso en línea: | Texto Completo |
Tabla de Contenidos:
- 1. Ranking in IR
- 2. Learning to Rank for IR
- 3. Regression/Classification: Conventional ML Approach to Learning to Rank
- 4. Ordinal Regression: A Pointwise Approach to Learning to Rank
- 5. Preference Learning: A Pairwise Approach to Learning to Rank
- 6. Listwise Ranking: A Listwise APproach to Learning to Rank
- 7. Advanced Topics
- 8. LETOR: A Benchmark Dataset for Learning to Rank
- 9. SUmmary and Outlook.