Cargando…

Learning to Rank for Information Retrieval

Due to the fast growth of the Web and the difficulties in finding desired information, efficient and effective information retrieval systems have become more important than ever, and the search engine has become an essential tool for many people. The ranker, a central component in every search engin...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Liu, Tie-Yan (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-14267-3
003 DE-He213
005 20220119020552.0
007 cr nn 008mamaa
008 110429s2011 gw | s |||| 0|eng d
020 |a 9783642142673  |9 978-3-642-14267-3 
024 7 |a 10.1007/978-3-642-14267-3  |2 doi 
050 4 |a QA75.5-76.95 
072 7 |a UNH  |2 bicssc 
072 7 |a UND  |2 bicssc 
072 7 |a COM030000  |2 bisacsh 
072 7 |a UNH  |2 thema 
072 7 |a UND  |2 thema 
082 0 4 |a 025.04  |2 23 
100 1 |a Liu, Tie-Yan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Learning to Rank for Information Retrieval  |h [electronic resource] /  |c by Tie-Yan Liu. 
250 |a 1st ed. 2011. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2011. 
300 |a XVII, 285 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a 1. Ranking in IR -- 2. Learning to Rank for IR -- 3. Regression/Classification: Conventional ML Approach to Learning to Rank -- 4. Ordinal Regression: A Pointwise Approach to Learning to Rank -- 5. Preference Learning: A Pairwise Approach to Learning to Rank -- 6. Listwise Ranking: A Listwise APproach to Learning to Rank -- 7. Advanced Topics -- 8. LETOR: A Benchmark Dataset for Learning to Rank -- 9. SUmmary and Outlook. 
520 |a Due to the fast growth of the Web and the difficulties in finding desired information, efficient and effective information retrieval systems have become more important than ever, and the search engine has become an essential tool for many people. The ranker, a central component in every search engine, is responsible for the matching between processed queries and indexed documents. Because of its central role, great attention has been paid to the research and development of ranking technologies. In addition, ranking is also pivotal for many other information retrieval applications, such as collaborative filtering, definition ranking, question answering, multimedia retrieval, text summarization, and online advertisement. Leveraging machine learning technologies in the ranking process has led to innovative and more effective ranking models, and eventually to a completely new research area called "learning to rank". Liu first gives a comprehensive review of the major approaches to learning to rank. For each approach he presents the basic framework, with example algorithms, and he discusses its advantages and disadvantages. He continues with some recent advances in learning to rank that cannot be simply categorized into the three major approaches - these include relational ranking, query-dependent ranking, transfer ranking, and semisupervised ranking. His presentation is completed by several examples that apply these technologies to solve real information retrieval problems, and by theoretical discussions on guarantees for ranking performance. This book is written for researchers and graduate students in both information retrieval and machine learning. They will find here the only comprehensive description of the state of the art in a field that has driven the recent advances in search engine development. 
650 0 |a Information storage and retrieval systems. 
650 0 |a Artificial intelligence. 
650 0 |a Computer science-Mathematics. 
650 0 |a Mathematical statistics. 
650 0 |a Pattern recognition systems. 
650 1 4 |a Information Storage and Retrieval. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Probability and Statistics in Computer Science. 
650 2 4 |a Automated Pattern Recognition. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642142666 
776 0 8 |i Printed edition:  |z 9783642441240 
776 0 8 |i Printed edition:  |z 9783642142680 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-14267-3  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)