Cargando…

Recruitment Learning

This book presents a fascinating and self-contained account of "recruitment learning", a model and theory of fast learning in the neocortex. In contrast to the more common attractor network paradigm for long- and short-term memory, recruitment learning focuses on one-shot learning or "...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Diederich, Joachim (Autor), Gunay, Cengiz (Autor), Hogan, James M. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Colección:Studies in Computational Intelligence, 303
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-14028-0
003 DE-He213
005 20220114164640.0
007 cr nn 008mamaa
008 101129s2011 gw | s |||| 0|eng d
020 |a 9783642140280  |9 978-3-642-14028-0 
024 7 |a 10.1007/978-3-642-14028-0  |2 doi 
050 4 |a TA329-348 
050 4 |a TA345-345.5 
072 7 |a TBJ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a TBJ  |2 thema 
082 0 4 |a 620  |2 23 
100 1 |a Diederich, Joachim.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Recruitment Learning  |h [electronic resource] /  |c by Joachim Diederich, Cengiz Gunay, James M. Hogan. 
250 |a 1st ed. 2011. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2011. 
300 |a X, 314 p. 109 illus., 33 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 303 
505 0 |a PART I: Recruitment in Discrete Time Neural Networks -- Recruitment Learning - An Introduction -- One-shot learning - Specialization and Generalization -- Connectivity and Candidate Structures -- Representation and Recruitment -- Cognitive Applications -- PART II: Recruitment in Continuous Time Neural Networks -- Spiking Neural Networks and Temporal Binding -- Synchronised Recruitment in Cortical -- The Stability of Recruited Concepts -- Conclusions. 
520 |a This book presents a fascinating and self-contained account of "recruitment learning", a model and theory of fast learning in the neocortex. In contrast to the more common attractor network paradigm for long- and short-term memory, recruitment learning focuses on one-shot learning or "chunking" of arbitrary feature conjunctions that co-occur in single presentations. The book starts with a comprehensive review of the historic background of recruitment learning, putting special emphasis on the ground-breaking work of D.O. Hebb, W.A.Wickelgren, J.A.Feldman, L.G.Valiant, and L. Shastri. Afterwards a thorough mathematical analysis of the model is presented which shows that recruitment is indeed a plausible mechanism of memory formation in the neocortex. A third part extends the main concepts towards state-of-the-art spiking neuron models and dynamic synchronization as a tentative solution of the binding problem. The book further discusses the possible role of adult neurogenesis for recruitment. These recent developments put the theory of recruitment learning at the forefront of research on biologically inspired memory models and make the book an important and timely contribution to the field. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 0 |a Artificial intelligence. 
650 1 4 |a Mathematical and Computational Engineering Applications. 
650 2 4 |a Artificial Intelligence. 
700 1 |a Gunay, Cengiz.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Hogan, James M.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642265471 
776 0 8 |i Printed edition:  |z 9783642140273 
776 0 8 |i Printed edition:  |z 9783642140297 
830 0 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 303 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-14028-0  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)