Cargando…

Uncertainty Theory A Branch of Mathematics for Modeling Human Uncertainty /

Uncertainty theory is a branch of mathematics based on normality, monotonicity, self-duality, countable subadditivity, and product measure axioms. Uncertainty is any concept that satisfies the axioms of uncertainty theory. Thus uncertainty is neither randomness nor fuzziness. It is also known from s...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Liu, Baoding (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2010.
Edición:1st ed. 2010.
Colección:Studies in Computational Intelligence, 300
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-13959-8
003 DE-He213
005 20220114095634.0
007 cr nn 008mamaa
008 100715s2010 gw | s |||| 0|eng d
020 |a 9783642139598  |9 978-3-642-13959-8 
024 7 |a 10.1007/978-3-642-13959-8  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Uncertainty Theory  |h [electronic resource] :  |b A Branch of Mathematics for Modeling Human Uncertainty /  |c edited by Baoding Liu. 
250 |a 1st ed. 2010. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2010. 
300 |a XI, 350 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 300 
505 0 |a Uncertainty Theory -- Uncertain Programming -- Uncertain Risk Analysis -- Uncertain Reliability Analysis -- Uncertain Process -- Uncertain Calculus -- Uncertain Differential Equation -- Uncertain Logic -- Uncertain Entailment -- Uncertain Set Theory -- Uncertain Inference. 
520 |a Uncertainty theory is a branch of mathematics based on normality, monotonicity, self-duality, countable subadditivity, and product measure axioms. Uncertainty is any concept that satisfies the axioms of uncertainty theory. Thus uncertainty is neither randomness nor fuzziness. It is also known from some surveys that a lot of phenomena do behave like uncertainty. How do we model uncertainty? How do we use uncertainty theory? In order to answer these questions, this book provides a self-contained, comprehensive and up-to-date presentation of uncertainty theory, including uncertain programming, uncertain risk analysis, uncertain reliability analysis, uncertain process, uncertain calculus, uncertain differential equation, uncertain logic, uncertain entailment, and uncertain inference. Mathematicians, researchers, engineers, designers, and students in the field of mathematics, information science, operations research, system science, industrial engineering, computer science, artificial intelligence, finance, control, and management science will find this work a stimulating and useful reference. 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 0 |a Electronic commerce. 
650 0 |a Business information services. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a e-Commerce and e-Business. 
650 2 4 |a IT in Business. 
700 1 |a Liu, Baoding.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642422485 
776 0 8 |i Printed edition:  |z 9783642139604 
776 0 8 |i Printed edition:  |z 9783642139581 
830 0 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 300 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-13959-8  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)