Adaptive Representations for Reinforcement Learning
This book presents new algorithms for reinforcement learning, a form of machine learning in which an autonomous agent seeks a control policy for a sequential decision task. Since current methods typically rely on manually designed solution representations, agents that automatically adapt their own r...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Autor Corporativo: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2010.
|
Edición: | 1st ed. 2010. |
Colección: | Studies in Computational Intelligence,
291 |
Temas: | |
Acceso en línea: | Texto Completo |
Tabla de Contenidos:
- Part 1 Introduction
- Part 2 Reinforcement Learning
- Part 3 On-Line Evolutionary Computation
- Part 4 Evolutionary Function Approximation
- Part 5 Sample-Efficient Evolutionary Function Approximation
- Part 6 Automatic Feature Selection for Reinforcement Learning
- Part 7 Adaptive Tile Coding
- Part 8 RelatedWork
- Part 9 Conclusion
- Part 10 Statistical Significance.