Adaptive Representations for Reinforcement Learning
This book presents new algorithms for reinforcement learning, a form of machine learning in which an autonomous agent seeks a control policy for a sequential decision task. Since current methods typically rely on manually designed solution representations, agents that automatically adapt their own r...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | Whiteson, Shimon (Autor) |
Autor Corporativo: | SpringerLink (Online service) |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2010.
|
Edición: | 1st ed. 2010. |
Colección: | Studies in Computational Intelligence,
291 |
Temas: | |
Acceso en línea: | Texto Completo |
Ejemplares similares
-
Reinforcement Learning State-of-the-Art /
Publicado: (2012) -
Transfer in Reinforcement Learning Domains
por: Taylor, Matthew
Publicado: (2009) -
Design of Experiments for Reinforcement Learning
por: Gatti, Christopher
Publicado: (2015) -
Intelligent and Adaptive Educational-Learning Systems Achievements and Trends /
Publicado: (2013) -
Intelligent Adaptation and Personalization Techniques in Computer-Supported Collaborative Learning
Publicado: (2012)