Cargando…

Optimization and Regularization for Computational Inverse Problems and Applications

"Optimization and Regularization for Computational Inverse Problems and Applications" focuses on advances in inversion theory and recent developments with practical applications, particularly emphasizing the combination of optimization and regularization for solving inverse problems. This...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Wang, Yanfei (Editor ), Yagola, Anatoly G. (Editor ), Yang, Changchun (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-13742-6
003 DE-He213
005 20230810205140.0
007 cr nn 008mamaa
008 110629s2011 gw | s |||| 0|eng d
020 |a 9783642137426  |9 978-3-642-13742-6 
024 7 |a 10.1007/978-3-642-13742-6  |2 doi 
050 4 |a QA71-90 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT006000  |2 bisacsh 
072 7 |a PBKS  |2 thema 
082 0 4 |a 518  |2 23 
245 1 0 |a Optimization and Regularization for Computational Inverse Problems and Applications  |h [electronic resource] /  |c edited by Yanfei Wang, Anatoly G. Yagola, Changchun Yang. 
250 |a 1st ed. 2011. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2011. 
300 |a 400 p. 36 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Regularization Theory and Recent Developments -- Nonstandard Regularization and Advanced Optimization Theory and Methods -- Numerical Inversion in Geoscience and Quantitative Remote Sensing. 
520 |a "Optimization and Regularization for Computational Inverse Problems and Applications" focuses on advances in inversion theory and recent developments with practical applications, particularly emphasizing the combination of optimization and regularization for solving inverse problems. This book covers both the methods, including standard regularization theory, Fejer processes for linear and nonlinear problems, the balancing principle, extrapolated regularization, nonstandard regularization, nonlinear gradient method, the nonmonotone gradient method, subspace method and Lie group method; and the practical applications, such as the reconstruction problem for inverse scattering, molecular spectra data processing, quantitative remote sensing inversion, seismic inversion using the Lie group method, and the gravitational lensing problem. Scientists, researchers and engineers, as well as graduate students engaged in applied mathematics, engineering, geophysics, medical science, image processing, remote sensing and atmospheric science will benefit from this book. Dr. Yanfei Wang is a Professor at the Institute of Geology and Geophysics, Chinese Academy of Sciences, China. Dr. Sc. Anatoly G. Yagola is a Professor and Assistant Dean of the Physical Faculty, Lomonosov Moscow State University, Russia. Dr. Changchun Yang is a Professor and Vice Director of the Institute of Geology and Geophysics, Chinese Academy of Sciences, China. 
650 0 |a Mathematics  |x Data processing. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering  |x Data processing. 
650 0 |a Geographic information systems. 
650 1 4 |a Computational Mathematics and Numerical Analysis. 
650 2 4 |a Mathematical and Computational Engineering Applications. 
650 2 4 |a Geographical Information System. 
700 1 |a Wang, Yanfei.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Yagola, Anatoly G.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Yang, Changchun.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642137419 
776 0 8 |i Printed edition:  |z 9783642137433 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-13742-6  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)