Cargando…

Dynamical Systems Stability, Controllability and Chaotic Behavior /

At the end of the nineteenth century Lyapunov and Poincaré developed the so called qualitative theory of differential equations and introduced geometric-topological considerations which have led to the concept of dynamical systems. In its present abstract form this concept goes back to G.D. Birkhof...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Krabs, Werner (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2010.
Edición:1st ed. 2010.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-13722-8
003 DE-He213
005 20220118051353.0
007 cr nn 008mamaa
008 100803s2010 gw | s |||| 0|eng d
020 |a 9783642137228  |9 978-3-642-13722-8 
024 7 |a 10.1007/978-3-642-13722-8  |2 doi 
050 4 |a QA843-871 
072 7 |a GPFC  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a GPFC  |2 thema 
082 0 4 |a 515.39  |2 23 
100 1 |a Krabs, Werner.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Dynamical Systems  |h [electronic resource] :  |b Stability, Controllability and Chaotic Behavior /  |c by Werner Krabs. 
250 |a 1st ed. 2010. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2010. 
300 |a X, 238 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Uncontrolled Systems -- Controlled Systems -- Chaotic Behavior of Autonomous Time-Discrete Systems -- A Dynamical Method for the Calculation of Nash-Equilibria in n-Person Games -- Optimal Control in Chemotherapy of Cancer. 
520 |a At the end of the nineteenth century Lyapunov and Poincaré developed the so called qualitative theory of differential equations and introduced geometric-topological considerations which have led to the concept of dynamical systems. In its present abstract form this concept goes back to G.D. Birkhoff. This is also the starting point of Chapter 1 of this book in which uncontrolled and controlled time-continuous and time-discrete systems are investigated. Controlled dynamical systems could be considered as dynamical systems in the strong sense, if the controls were incorporated into the state space. We, however, adapt the conventional treatment of controlled systems as in control theory. We are mainly interested in the question of controllability of dynamical systems into equilibrium states. In the non-autonomous time-discrete case we also consider the problem of stabilization. We conclude with chaotic behavior of autonomous time discrete systems and actual real-world applications. 
650 0 |a Dynamical systems. 
650 0 |a Operations research. 
650 0 |a Control engineering. 
650 0 |a Robotics. 
650 0 |a Automation. 
650 1 4 |a Dynamical Systems. 
650 2 4 |a Operations Research and Decision Theory. 
650 2 4 |a Control, Robotics, Automation. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642137211 
776 0 8 |i Printed edition:  |z 9783642435171 
776 0 8 |i Printed edition:  |z 9783642137235 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-13722-8  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)