Cargando…

Numerical Solution of Stochastic Differential Equations with Jumps in Finance

In financial and actuarial modeling and other areas of application, stochastic differential equations with jumps have been employed to describe the dynamics of various state variables. The numerical solution of such equations is more complex than that of those only driven by Wiener processes, descri...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Platen, Eckhard (Autor), Bruti-Liberati, Nicola (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2010.
Edición:1st ed. 2010.
Colección:Stochastic Modelling and Applied Probability, 64
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-13694-8
003 DE-He213
005 20220117232314.0
007 cr nn 008mamaa
008 100721s2010 gw | s |||| 0|eng d
020 |a 9783642136948  |9 978-3-642-13694-8 
024 7 |a 10.1007/978-3-642-13694-8  |2 doi 
050 4 |a QA273.A1-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Platen, Eckhard.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Numerical Solution of Stochastic Differential Equations with Jumps in Finance  |h [electronic resource] /  |c by Eckhard Platen, Nicola Bruti-Liberati. 
250 |a 1st ed. 2010. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2010. 
300 |a XXVI, 856 p. 169 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Stochastic Modelling and Applied Probability,  |x 2197-439X ;  |v 64 
505 0 |a Stochastic Differential Equations with Jumps -- Exact Simulation of Solutions of SDEs -- Benchmark Approach to Finance and Insurance -- Stochastic Expansions -- to Scenario Simulation -- Regular Strong Taylor Approximations with Jumps -- Regular Strong Itô Approximations -- Jump-Adapted Strong Approximations -- Estimating Discretely Observed Diffusions -- Filtering -- Monte Carlo Simulation of SDEs -- Regular Weak Taylor Approximations -- Jump-Adapted Weak Approximations -- Numerical Stability -- Martingale Representations and Hedge Ratios -- Variance Reduction Techniques -- Trees and Markov Chain Approximations -- Solutions for Exercises. 
520 |a In financial and actuarial modeling and other areas of application, stochastic differential equations with jumps have been employed to describe the dynamics of various state variables. The numerical solution of such equations is more complex than that of those only driven by Wiener processes, described in Kloeden & Platen: Numerical Solution of Stochastic Differential Equations (1992). The present monograph builds on the above-mentioned work and provides an introduction to stochastic differential equations with jumps, in both theory and application, emphasizing the numerical methods needed to solve such equations. It presents many new results on higher-order methods for scenario and Monte Carlo simulation, including implicit, predictor corrector, extrapolation, Markov chain and variance reduction methods, stressing the importance of their numerical stability. Furthermore, it includes chapters on exact simulation, estimation and filtering. Besides serving as a basic text on quantitative methods, it offers ready access to a large number of potential research problems in an area that is widely applicable and rapidly expanding. Finance is chosen as the area of application because much of the recent research on stochastic numerical methods has been driven by challenges in quantitative finance. Moreover, the volume introduces readers to the modern benchmark approach that provides a general framework for modeling in finance and insurance beyond the standard risk-neutral approach. It requires undergraduate background in mathematical or quantitative methods, is accessible to a broad readership, including those who are only seeking numerical recipes, and includes exercises that help the reader develop a deeper understanding of the underlying mathematics. 
650 0 |a Probabilities. 
650 0 |a Mathematics. 
650 0 |a Statistics . 
650 0 |a Social sciences-Mathematics. 
650 1 4 |a Probability Theory. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Statistics in Business, Management, Economics, Finance, Insurance. 
650 2 4 |a Mathematics in Business, Economics and Finance. 
700 1 |a Bruti-Liberati, Nicola.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642120572 
776 0 8 |i Printed edition:  |z 9783642136931 
776 0 8 |i Printed edition:  |z 9783662519738 
830 0 |a Stochastic Modelling and Applied Probability,  |x 2197-439X ;  |v 64 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-13694-8  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)