Cargando…

Advances in Knowledge Discovery and Data Mining, Part I 14th Pacific-Asia Conference, PAKDD 2010, Hyderabat, India, June 21-24, 2010, Proceedings /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Zaki, Mohammed J. (Editor ), Yu, Jeffrey Xu (Editor ), Ravindran, B. (Editor ), Pudi, Vikram (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2010.
Edición:1st ed. 2010.
Colección:Lecture Notes in Artificial Intelligence, 6118
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-13657-3
003 DE-He213
005 20221012192015.0
007 cr nn 008mamaa
008 100529s2010 gw | s |||| 0|eng d
020 |a 9783642136573  |9 978-3-642-13657-3 
024 7 |a 10.1007/978-3-642-13657-3  |2 doi 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
072 7 |a UNF  |2 thema 
072 7 |a UYQE  |2 thema 
082 0 4 |a 006.312  |2 23 
245 1 0 |a Advances in Knowledge Discovery and Data Mining, Part I  |h [electronic resource] :  |b 14th Pacific-Asia Conference, PAKDD 2010, Hyderabat, India, June 21-24, 2010, Proceedings /  |c edited by Mohammed J. Zaki, Jeffrey Xu Yu, B. Ravindran, Vikram Pudi. 
250 |a 1st ed. 2010. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2010. 
300 |a 506 p. 167 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Artificial Intelligence,  |x 2945-9141 ;  |v 6118 
505 0 |a Keynote Speeches -- Empower People with Knowledge: The Next Frontier for Web Search -- Discovery of Patterns in Global Earth Science Data Using Data Mining -- Game Theoretic Approaches to Knowledge Discovery and Data Mining -- Session 1A. Clustering I -- A Set Correlation Model for Partitional Clustering -- iVAT and aVAT: Enhanced Visual Analysis for Cluster Tendency Assessment -- A Robust Seedless Algorithm for Correlation Clustering -- Integrative Parameter-Free Clustering of Data with Mixed Type Attributes -- Data Transformation for Sum Squared Residue -- Session 1B. Social Networks -- A Better Strategy of Discovering Link-Pattern Based Communities by Classical Clustering Methods -- Mining Antagonistic Communities from Social Networks -- As Time Goes by: Discovering Eras in Evolving Social Networks -- Online Sampling of High Centrality Individuals in Social Networks -- Estimate on Expectation for Influence Maximization in Social Networks -- Session 1C. Classification I -- A Novel Scalable Multi-class ROC for Effective Visualization and Computation -- Efficiently Finding the Best Parameter for the Emerging Pattern-Based Classifier PCL -- Rough Margin Based Core Vector Machine -- BoostML: An Adaptive Metric Learning for Nearest Neighbor Classification -- A New Emerging Pattern Mining Algorithm and Its Application in Supervised Classification -- Session 2A. Privacy -- Hiding Emerging Patterns with Local Recoding Generalization -- Anonymizing Transaction Data by Integrating Suppression and Generalization -- Satisfying Privacy Requirements: One Step before Anonymization -- Computation of Ratios of Secure Summations in Multi-party Privacy-Preserving Latent Dirichlet Allocation -- Privacy-Preserving Network Aggregation -- Multivariate Equi-width Data Swapping for Private Data Publication -- Session 2B. Spatio-Temporal Mining -- Correspondence Clustering: An Approach to Cluster Multiple Related Spatial Datasets -- Mining Trajectory Corridors Using Fréchet Distance and Meshing Grids -- Subseries Join: A Similarity-Based Time Series Match Approach -- TWave: High-Order Analysis of Spatiotemporal Data -- Spatial Clustering with Obstacles Constraints by Dynamic Piecewise-Mapped and Nonlinear Inertia Weights PSO -- Session 3A. Pattern Mining -- An Efficient GA-Based Algorithm for Mining Negative Sequential Patterns -- Valency Based Weighted Association Rule Mining -- Ranking Sequential Patterns with Respect to Significance -- Mining Association Rules in Long Sequences -- Mining Closed Episodes from Event Sequences Efficiently -- Most Significant Substring Mining Based on Chi-square Measure -- Session 3B. Recommendations/Answers -- Probabilistic User Modeling in the Presence of Drifting Concepts -- Using Association Rules to Solve the Cold-Start Problem in Recommender Systems -- Semi-supervised Tag Recommendation - Using Untagged Resources to Mitigate Cold-Start Problems -- Cost-Sensitive Listwise Ranking Approach -- Mining Wikipedia and Yahoo! Answers for Question Expansion in Opinion QA -- Answer Diversification for Complex Question Answering on the Web -- Vocabulary Filtering for Term Weighting in Archived Question Search -- Session 3C. Topic Modeling/Information Extraction -- On Finding the Natural Number of Topics with Latent Dirichlet Allocation: Some Observations -- Supervising Latent Topic Model for Maximum-Margin Text Classification and Regression -- Resource-Bounded Information Extraction: Acquiring Missing Feature Values on Demand -- Efficient Deep Web Crawling Using Reinforcement Learning -- Topic Decomposition and Summarization -- Session 4A. Skylines/Uncertainty -- UNN: A Neural Network for Uncertain Data Classification -- SkyDist: Data Mining on Skyline Objects -- Multi-Source Skyline Queries Processing in Multi-Dimensional Space -- Efficient Pattern Mining of Uncertain Data with Sampling -- Classifier Ensemble for Uncertain Data Stream Classification. 
650 0 |a Data mining. 
650 0 |a Artificial intelligence. 
650 0 |a Application software. 
650 0 |a Information storage and retrieval systems. 
650 0 |a Database management. 
650 0 |a Algorithms. 
650 1 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Computer and Information Systems Applications. 
650 2 4 |a Information Storage and Retrieval. 
650 2 4 |a Database Management. 
650 2 4 |a Algorithms. 
700 1 |a Zaki, Mohammed J.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Yu, Jeffrey Xu.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Ravindran, B.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Pudi, Vikram.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642136566 
776 0 8 |i Printed edition:  |z 9783642136580 
830 0 |a Lecture Notes in Artificial Intelligence,  |x 2945-9141 ;  |v 6118 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-13657-3  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)