Cargando…

Incremental Learning for Motion Prediction of Pedestrians and Vehicles

Modeling and predicting human and vehicle motion is an active research domain. Owing to the difficulty in modeling the various factors that determine motion (e.g. internal state, perception) this is often tackled by applying machine learning techniques to build a statistical model, using as input a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Vasquez Govea, Alejandro Dizan (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2010.
Edición:1st ed. 2010.
Colección:Springer Tracts in Advanced Robotics, 64
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-13642-9
003 DE-He213
005 20220115030758.0
007 cr nn 008mamaa
008 100715s2010 gw | s |||| 0|eng d
020 |a 9783642136429  |9 978-3-642-13642-9 
024 7 |a 10.1007/978-3-642-13642-9  |2 doi 
050 4 |a TJ212-225 
050 4 |a TJ210.2-211.495 
072 7 |a TJFM  |2 bicssc 
072 7 |a TEC037000  |2 bisacsh 
072 7 |a TJFM  |2 thema 
082 0 4 |a 629.8  |2 23 
100 1 |a Vasquez Govea, Alejandro Dizan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Incremental Learning for Motion Prediction of Pedestrians and Vehicles  |h [electronic resource] /  |c by Alejandro Dizan Vasquez Govea. 
250 |a 1st ed. 2010. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2010. 
300 |a 160 p. 35 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Tracts in Advanced Robotics,  |x 1610-742X ;  |v 64 
505 0 |a I: Background -- Probabilistic Models -- II: State of the Art -- Intentional Motion Prediction -- Hidden Markov Models -- III: Proposed Approach -- Growing Hidden Markov Models -- Learning and Predicting Motion with GHMMs -- IV: Experiments -- Experimental Data -- Experimental Results -- V: Conclusion -- Conclusions and Future Work. 
520 |a Modeling and predicting human and vehicle motion is an active research domain. Owing to the difficulty in modeling the various factors that determine motion (e.g. internal state, perception) this is often tackled by applying machine learning techniques to build a statistical model, using as input a collection of trajectories gathered through a sensor (e.g. camera, laser scanner), and then using that model to predict further motion. Unfortunately, most current techniques use offline learning algorithms, meaning that they are not able to learn new motion patterns once the learning stage has finished. This books presents a lifelong learning approach where motion patterns can be learned incrementally, and in parallel with prediction. The approach is based on a novel extension to hidden Markov models, and the main contribution presented in this book, called growing hidden Markov models, which gives us the ability to learn incrementally both the parameters and the structure of the model. The proposed approach has been extensively validated with synthetic and real trajectory data. In our experiments our approach consistently learned motion models that were more compact and accurate than those produced by two other state-of-the-art techniques, confirming the viability of lifelong learning approaches to build human behavior models. 
650 0 |a Control engineering. 
650 0 |a Robotics. 
650 0 |a Automation. 
650 0 |a Pattern recognition systems. 
650 0 |a Artificial intelligence. 
650 1 4 |a Control, Robotics, Automation. 
650 2 4 |a Automated Pattern Recognition. 
650 2 4 |a Artificial Intelligence. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642136412 
776 0 8 |i Printed edition:  |z 9783642263859 
776 0 8 |i Printed edition:  |z 9783642136436 
830 0 |a Springer Tracts in Advanced Robotics,  |x 1610-742X ;  |v 64 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-13642-9  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)