Cargando…

Intersection Spaces, Spatial Homology Truncation, and String Theory

Intersection cohomology assigns groups which satisfy a generalized form of Poincaré duality over the rationals to a stratified singular space. The present monograph introduces a method that assigns to certain classes of stratified spaces cell complexes, called intersection spaces, whose ordinary ra...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Banagl, Markus (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2010.
Edición:1st ed. 2010.
Colección:Lecture Notes in Mathematics, 1997
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-12589-8
003 DE-He213
005 20220113140153.0
007 cr nn 008mamaa
008 100623s2010 gw | s |||| 0|eng d
020 |a 9783642125898  |9 978-3-642-12589-8 
024 7 |a 10.1007/978-3-642-12589-8  |2 doi 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
072 7 |a PBMW  |2 thema 
082 0 4 |a 516.35  |2 23 
100 1 |a Banagl, Markus.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Intersection Spaces, Spatial Homology Truncation, and String Theory  |h [electronic resource] /  |c by Markus Banagl. 
250 |a 1st ed. 2010. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2010. 
300 |a XVI, 224 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 1997 
520 |a Intersection cohomology assigns groups which satisfy a generalized form of Poincaré duality over the rationals to a stratified singular space. The present monograph introduces a method that assigns to certain classes of stratified spaces cell complexes, called intersection spaces, whose ordinary rational homology satisfies generalized Poincaré duality. The cornerstone of the method is a process of spatial homology truncation, whose functoriality properties are analyzed in detail. The material on truncation is autonomous and may be of independent interest to homotopy theorists. The cohomology of intersection spaces is not isomorphic to intersection cohomology and possesses algebraic features such as perversity-internal cup-products and cohomology operations that are not generally available for intersection cohomology. A mirror-symmetric interpretation, as well as applications to string theory concerning massless D-branes arising in type IIB theory during a Calabi-Yau conifold transition, are discussed. 
650 0 |a Algebraic geometry. 
650 0 |a Geometry. 
650 0 |a Algebraic topology. 
650 0 |a Topology. 
650 0 |a Manifolds (Mathematics). 
650 0 |a Elementary particles (Physics). 
650 0 |a Quantum field theory. 
650 1 4 |a Algebraic Geometry. 
650 2 4 |a Geometry. 
650 2 4 |a Algebraic Topology. 
650 2 4 |a Topology. 
650 2 4 |a Manifolds and Cell Complexes. 
650 2 4 |a Elementary Particles, Quantum Field Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642125881 
776 0 8 |i Printed edition:  |z 9783642125904 
830 0 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 1997 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-12589-8  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)