Cargando…

Nature Inspired Cooperative Strategies for Optimization (NICSO 2010)

Many aspects of Nature, Biology or even from Society have become part of the techniques and algorithms used in computer science or they have been used to enhance or hybridize several techniques through the inclusion of advanced evolution, cooperation or biologically based additions. The previous NIC...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Cruz, Carlos (Editor ), González, Juan R. (Editor ), Pelta, David Alejandro (Editor ), Krasnogor, Natalio (Editor ), Terrazas, Germán (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2010.
Edición:1st ed. 2010.
Colección:Studies in Computational Intelligence, 284
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-12538-6
003 DE-He213
005 20220115005338.0
007 cr nn 008mamaa
008 100416s2010 gw | s |||| 0|eng d
020 |a 9783642125386  |9 978-3-642-12538-6 
024 7 |a 10.1007/978-3-642-12538-6  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Nature Inspired Cooperative Strategies for Optimization (NICSO 2010)  |h [electronic resource] /  |c edited by Carlos Cruz, Juan R. González, David Alejandro Pelta, Natalio Krasnogor, Germán Terrazas. 
250 |a 1st ed. 2010. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2010. 
300 |a 420 p. 118 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 284 
505 0 |a A Metabolic Subsumption Architecture for Cooperative Control of the e-Puck -- Social Target Localization in a Population of Foragers -- Using Knowledge Discovery in Cooperative Strategies: Two Case Studies -- Hybrid Cooperation Models for the Tool Switching Problem -- Fault Diagnosis in Industrial Systems Using Bioinspired Cooperative Strategies -- A New Metaheuristic Bat-Inspired Algorithm -- Evaluation of a Catalytic Search Algorithm -- Discovering Beneficial Cooperative Structures for the Automated Construction of Heuristics -- Eagle Strategy Using Lévy Walk and Firefly Algorithms for Stochastic Optimization -- CO2RBFN for Short and Medium Term Forecasting of the Extra-Virgin Olive Oil Price -- 3D Cell Pattern Generation in Artificial Development -- Partial Imitation Rule in Iterated Prisoner Dilemma Game on a Square Lattice -- A Dynamical Game Model for Sustainable Development -- Studying the Influence of the Objective Balancing Parameter in the Performance of a Multi-Objective Ant Colony Optimization Algorithm -- HC12: Highly Scalable Optimisation Algorithm -- Adaptive Evolutionary Testing: An Adaptive Approach to Search-Based Test Case Generation for Object-Oriented Software -- Evolutionary Algorithms for Planar MEMS Design Optimisation: A Comparative Study -- A Distributed Service Oriented Framework for Metaheuristics Using a Public Standard -- Cellular Genetic Algorithm on Graphic Processing Units -- Evolutionary Approaches to Joint Nash - Pareto Equilibria -- Accelerated Genetic Algorithms with Markov Chains -- Adapting Heuristic Mastermind Strategies to Evolutionary Algorithms -- Structural Versus Evaluation Based Solutions Similarity in Genetic Programming Based System Identification -- Artificial Bee Colony Optimization: A New Selection Scheme and Its Performance -- A Heuristic-Based Bee Colony Algorithm for the Multiprocessor Scheduling Problem -- A Bumble Bees Mating Optimization Algorithm for Global Unconstrained Optimization Problems -- A Neural-Endocrine Architecture for Foraging in Swarm Robotic Systems -- Using Entropy for Evaluating Swarm Intelligence Algorithms -- Empirical Study of Performance of Particle Swarm Optimization Algorithms Using Grid Computing -- Using PSO and RST to Predict the Resistant Capacity of Connections in Composite Structures -- Improvement Strategies for Multi-swarm PSO in Dynamic Environments -- Particle Swarm Optimization Based Tuning of Genetic Programming Evolved Classifier Expressions. 
520 |a Many aspects of Nature, Biology or even from Society have become part of the techniques and algorithms used in computer science or they have been used to enhance or hybridize several techniques through the inclusion of advanced evolution, cooperation or biologically based additions. The previous NICSO workshops were held in Granada, Spain, 2006, Acireale, Italy, 2007, and in Tenerife, Spain, 2008. As in the previous editions, NICSO 2010, held in Granada, Spain, was conceived as a forum for the latest ideas and the state of the art research related to nature inspired cooperative strategies. The contributions collected in this book cover topics including nature-inspired techniques like Genetic Algorithms, Evolutionary Algorithms, Ant and Bee Colonies, Swarm Intelligence approaches, Neural Networks, several Cooperation Models, Structures and Strategies, Agents Models, Social Interactions, as well as new algorithms based on the behaviour of fireflies or bats. 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 0 |a Mathematics. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Applications of Mathematics. 
700 1 |a Cruz, Carlos.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a González, Juan R.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Pelta, David Alejandro.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Krasnogor, Natalio.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Terrazas, Germán.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642263071 
776 0 8 |i Printed edition:  |z 9783642125379 
776 0 8 |i Printed edition:  |z 9783642125393 
830 0 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 284 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-12538-6  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)