Cargando…

Spectral Theory of Non-Commutative Harmonic Oscillators: An Introduction

This volume describes the spectral theory of the Weyl quantization of systems of polynomials in phase-space variables, modelled after the harmonic oscillator. The main technique used is pseudodifferential calculus, including global and semiclassical variants. The main results concern the meromorphic...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Parmeggiani, Alberto (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2010.
Edición:1st ed. 2010.
Colección:Lecture Notes in Mathematics, 1992
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-11922-4
003 DE-He213
005 20220119145955.0
007 cr nn 008mamaa
008 100721s2010 gw | s |||| 0|eng d
020 |a 9783642119224  |9 978-3-642-11922-4 
024 7 |a 10.1007/978-3-642-11922-4  |2 doi 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
072 7 |a PBKJ  |2 thema 
082 0 4 |a 515.35  |2 23 
100 1 |a Parmeggiani, Alberto.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Spectral Theory of Non-Commutative Harmonic Oscillators: An Introduction  |h [electronic resource] /  |c by Alberto Parmeggiani. 
250 |a 1st ed. 2010. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2010. 
300 |a XII, 260 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 1992 
505 0 |a The Harmonic Oscillator -- The Weyl-Hörmander Calculus -- The Spectral Counting Function N(?) and the Behavior of the Eigenvalues: Part 1 -- The Heat-Semigroup, Functional Calculus and Kernels -- The Spectral Counting Function N(?) and the Behavior of the Eigenvalues: Part 2 -- The Spectral Zeta Function -- Some Properties of the Eigenvalues of -- Some Tools from the Semiclassical Calculus -- On Operators Induced by General Finite-Rank Orthogonal Projections -- Energy-Levels, Dynamics, and the Maslov Index -- Localization and Multiplicity of a Self-Adjoint Elliptic 2×2 Positive NCHO in . 
520 |a This volume describes the spectral theory of the Weyl quantization of systems of polynomials in phase-space variables, modelled after the harmonic oscillator. The main technique used is pseudodifferential calculus, including global and semiclassical variants. The main results concern the meromorphic continuation of the spectral zeta function associated with the spectrum, and the localization (and the multiplicity) of the eigenvalues of such systems, described in terms of "classical" invariants (such as the periods of the periodic trajectories of the bicharacteristic flow associated with the eiganvalues of the symbol). The book utilizes techniques that are very powerful and flexible and presents an approach that could also be used for a variety of other problems. It also features expositions on different results throughout the literature. 
650 0 |a Differential equations. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 0 |a Mathematical physics. 
650 1 4 |a Differential Equations. 
650 2 4 |a Global Analysis and Analysis on Manifolds. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642119217 
776 0 8 |i Printed edition:  |z 9783642119231 
830 0 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 1992 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-11922-4  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)