|
|
|
|
LEADER |
00000nam a22000005i 4500 |
001 |
978-3-642-10970-6 |
003 |
DE-He213 |
005 |
20220118143827.0 |
007 |
cr nn 008mamaa |
008 |
110603s2011 gw | s |||| 0|eng d |
020 |
|
|
|a 9783642109706
|9 978-3-642-10970-6
|
024 |
7 |
|
|a 10.1007/978-3-642-10970-6
|2 doi
|
050 |
|
4 |
|a QA312-312.5
|
072 |
|
7 |
|a PBKL
|2 bicssc
|
072 |
|
7 |
|a MAT034000
|2 bisacsh
|
072 |
|
7 |
|a PBKL
|2 thema
|
082 |
0 |
4 |
|a 515.42
|2 23
|
245 |
1 |
0 |
|a Geometric Measure Theory and Minimal Surfaces
|h [electronic resource] :
|b Lectures given at a Summer School of the Centro Internazionale Matematico Estivo (C.I.M.E.) held in Varenna (Como), Italy, August 24 - September 2, 1972 /
|c edited by E. Bombieri.
|
250 |
|
|
|a 1st ed. 2011.
|
264 |
|
1 |
|a Berlin, Heidelberg :
|b Springer Berlin Heidelberg :
|b Imprint: Springer,
|c 2011.
|
300 |
|
|
|a 230 p. 27 illus.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a C.I.M.E. Summer Schools ;
|v 61
|
505 |
0 |
|
|a W.K. ALLARD: On the first variation of area and generalized mean curvature -- F.J. ALMGREN Jr.: Geometric measure theory and elliptic variational problems -- E. GIUSTI: Minimal surfaces with obstacles -- J. GUCKENHEIMER: Singularities in soap-bubble-like and soap-film-like surfaces -- D. KINDERLEHRER: The analyticity of the coincidence set in variational inequalities -- M. MIRANDA: Boundaries of Caciopoli sets in the calculus of variations -- L. PICCININI: De Giorgi's measure and thin obstacles.
|
520 |
|
|
|a W.K. ALLARD: On the first variation of area and generalized mean curvature.- F.J. ALMGREN Jr.: Geometric measure theory and elliptic variational problems.- E. GIUSTI: Minimal surfaces with obstacles.- J. GUCKENHEIMER: Singularities in soap-bubble-like and soap-film-like surfaces.- D. KINDERLEHRER: The analyticity of the coincidence set in variational inequalities.- M. MIRANDA: Boundaries of Caciopoli sets in the calculus of variations.- L. PICCININI: De Giorgi's measure and thin obstacles.
|
650 |
|
0 |
|a Measure theory.
|
650 |
1 |
4 |
|a Measure and Integration.
|
700 |
1 |
|
|a Bombieri, E.
|e editor.
|4 edt
|4 http://id.loc.gov/vocabulary/relators/edt
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer Nature eBook
|
776 |
0 |
8 |
|i Printed edition:
|z 9783642109713
|
776 |
0 |
8 |
|i Printed edition:
|z 9783642109690
|
830 |
|
0 |
|a C.I.M.E. Summer Schools ;
|v 61
|
856 |
4 |
0 |
|u https://doi.uam.elogim.com/10.1007/978-3-642-10970-6
|z Texto Completo
|
912 |
|
|
|a ZDB-2-SMA
|
912 |
|
|
|a ZDB-2-SXMS
|
950 |
|
|
|a Mathematics and Statistics (SpringerNature-11649)
|
950 |
|
|
|a Mathematics and Statistics (R0) (SpringerNature-43713)
|