Partial Inner Product Spaces Theory and Applications /
Partial Inner Product (PIP) Spaces are ubiquitous, e.g. Rigged Hilbert spaces, chains of Hilbert or Banach spaces (such as the Lebesgue spaces Lp over the real line), etc. In fact, most functional spaces used in (quantum) physics and in signal processing are of this type. The book contains a systema...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Autor Corporativo: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2009.
|
Edición: | 1st ed. 2009. |
Colección: | Lecture Notes in Mathematics,
1986 |
Temas: | |
Acceso en línea: | Texto Completo |
Tabla de Contenidos:
- General Theory: Algebraic Point of View
- General Theory: Topological Aspects
- Operators on PIP-Spaces and Indexed PIP-Spaces
- Examples of Indexed PIP-Spaces
- Refinements of PIP-Spaces
- Partial #x002A;-Algebras of Operators in a PIP-Space
- Applications in Mathematical Physics
- PIP-Spaces and Signal Processing.