Cargando…

Partial Inner Product Spaces Theory and Applications /

Partial Inner Product (PIP) Spaces are ubiquitous, e.g. Rigged Hilbert spaces, chains of Hilbert or Banach spaces (such as the Lebesgue spaces Lp over the real line), etc. In fact, most functional spaces used in (quantum) physics and in signal processing are of this type. The book contains a systema...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Antoine, J-P (Autor), Trapani, Camillo (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:Lecture Notes in Mathematics, 1986
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-05136-4
003 DE-He213
005 20220119123537.0
007 cr nn 008mamaa
008 100715s2009 gw | s |||| 0|eng d
020 |a 9783642051364  |9 978-3-642-05136-4 
024 7 |a 10.1007/978-3-642-05136-4  |2 doi 
050 4 |a QA319-329.9 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
072 7 |a PBKF  |2 thema 
082 0 4 |a 515.7  |2 23 
100 1 |a Antoine, J-P.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Partial Inner Product Spaces  |h [electronic resource] :  |b Theory and Applications /  |c by J-P Antoine, Camillo Trapani. 
250 |a 1st ed. 2009. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2009. 
300 |a XX, 358 p. 11 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 1986 
505 0 |a General Theory: Algebraic Point of View -- General Theory: Topological Aspects -- Operators on PIP-Spaces and Indexed PIP-Spaces -- Examples of Indexed PIP-Spaces -- Refinements of PIP-Spaces -- Partial #x002A;-Algebras of Operators in a PIP-Space -- Applications in Mathematical Physics -- PIP-Spaces and Signal Processing. 
520 |a Partial Inner Product (PIP) Spaces are ubiquitous, e.g. Rigged Hilbert spaces, chains of Hilbert or Banach spaces (such as the Lebesgue spaces Lp over the real line), etc. In fact, most functional spaces used in (quantum) physics and in signal processing are of this type. The book contains a systematic analysis of PIP spaces and operators defined on them. Numerous examples are described in detail and a large bibliography is provided. Finally, the last chapters cover the many applications of PIP spaces in physics and in signal/image processing, respectively. As such, the book will be useful both for researchers in mathematics and practitioners of these disciplines. 
650 0 |a Functional analysis. 
650 0 |a Operator theory. 
650 0 |a Elementary particles (Physics). 
650 0 |a Quantum field theory. 
650 0 |a Computer science-Mathematics. 
650 1 4 |a Functional Analysis. 
650 2 4 |a Operator Theory. 
650 2 4 |a Elementary Particles, Quantum Field Theory. 
650 2 4 |a Mathematical Applications in Computer Science. 
700 1 |a Trapani, Camillo.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642051609 
776 0 8 |i Printed edition:  |z 9783642051357 
830 0 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 1986 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-05136-4  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)