Hypergeometric Orthogonal Polynomials and Their q-Analogues
The very classical orthogonal polynomials named after Hermite, Laguerre and Jacobi, satisfy many common properties. For instance, they satisfy a second-order differential equation with polynomial coefficients and they can be expressed in terms of a hypergeometric function. Replacing the differential...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , , |
Autor Corporativo: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2010.
|
Edición: | 1st ed. 2010. |
Colección: | Springer Monographs in Mathematics,
|
Temas: | |
Acceso en línea: | Texto Completo |
Tabla de Contenidos:
- Definitions and Miscellaneous Formulas
- Classical orthogonal polynomials
- Orthogonal Polynomial Solutions of Differential Equations
- Orthogonal Polynomial Solutions of Real Difference Equations
- Orthogonal Polynomial Solutions of Complex Difference Equations
- Orthogonal Polynomial Solutions in x(x+u) of Real Difference Equations
- Orthogonal Polynomial Solutions in z(z+u) of Complex Difference Equations
- Hypergeometric Orthogonal Polynomials
- Polynomial Solutions of Eigenvalue Problems
- Classical q-orthogonal polynomials
- Orthogonal Polynomial Solutions of q-Difference Equations
- Orthogonal Polynomial Solutions in q?x of q-Difference Equations
- Orthogonal Polynomial Solutions in q?x+uqx of Real.