Cargando…

Hypergeometric Orthogonal Polynomials and Their q-Analogues

The very classical orthogonal polynomials named after Hermite, Laguerre and Jacobi, satisfy many common properties. For instance, they satisfy a second-order differential equation with polynomial coefficients and they can be expressed in terms of a hypergeometric function. Replacing the differential...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Koekoek, Roelof (Autor), Lesky, Peter A. (Autor), Swarttouw, René F. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2010.
Edición:1st ed. 2010.
Colección:Springer Monographs in Mathematics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-05014-5
003 DE-He213
005 20220115080656.0
007 cr nn 008mamaa
008 100318s2010 gw | s |||| 0|eng d
020 |a 9783642050145  |9 978-3-642-05014-5 
024 7 |a 10.1007/978-3-642-05014-5  |2 doi 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBK  |2 thema 
082 0 4 |a 515  |2 23 
100 1 |a Koekoek, Roelof.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Hypergeometric Orthogonal Polynomials and Their q-Analogues  |h [electronic resource] /  |c by Roelof Koekoek, Peter A. Lesky, René F. Swarttouw. 
250 |a 1st ed. 2010. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2010. 
300 |a XIX, 578 p. 2 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Monographs in Mathematics,  |x 2196-9922 
505 0 |a Definitions and Miscellaneous Formulas -- Classical orthogonal polynomials -- Orthogonal Polynomial Solutions of Differential Equations -- Orthogonal Polynomial Solutions of Real Difference Equations -- Orthogonal Polynomial Solutions of Complex Difference Equations -- Orthogonal Polynomial Solutions in x(x+u) of Real Difference Equations -- Orthogonal Polynomial Solutions in z(z+u) of Complex Difference Equations -- Hypergeometric Orthogonal Polynomials -- Polynomial Solutions of Eigenvalue Problems -- Classical q-orthogonal polynomials -- Orthogonal Polynomial Solutions of q-Difference Equations -- Orthogonal Polynomial Solutions in q?x of q-Difference Equations -- Orthogonal Polynomial Solutions in q?x+uqx of Real. 
520 |a The very classical orthogonal polynomials named after Hermite, Laguerre and Jacobi, satisfy many common properties. For instance, they satisfy a second-order differential equation with polynomial coefficients and they can be expressed in terms of a hypergeometric function. Replacing the differential equation by a second-order difference equation results in (discrete) orthogonal polynomial solutions with similar properties. Generalizations of these difference equations, in terms of Hahn's q-difference operator, lead to both continuous and discrete orthogonal polynomials with similar properties. For instance, they can be expressed in terms of (basic) hypergeometric functions. Based on Favard's theorem, the authors first classify all families of orthogonal polynomials satisfying a second-order differential or difference equation with polynomial coefficients. Together with the concept of duality this leads to the families of hypergeometric orthogonal polynomials belonging to the Askey scheme. For each family they list the most important properties and they indicate the (limit) relations. Furthermore the authors classify all q-orthogonal polynomials satisfying a second-order q-difference equation based on Hahn's q-operator. Together with the concept of duality this leads to the families of basic hypergeometric orthogonal polynomials which can be arranged in a q-analogue of the Askey scheme. Again, for each family they list the most important properties, the (limit) relations between the various families and the limit relations (for q --> 1) to the classical hypergeometric orthogonal polynomials belonging to the Askey scheme. These (basic) hypergeometric orthogonal polynomials have several applications in various areas of mathematics and (quantum) physics such as approximation theory, asymptotics, birth and death processes, probability and statistics, coding theory and combinatorics. 
650 0 |a Mathematical analysis. 
650 0 |a Special functions. 
650 1 4 |a Analysis. 
650 2 4 |a Special Functions. 
700 1 |a Lesky, Peter A.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Swarttouw, René F.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642050503 
776 0 8 |i Printed edition:  |z 9783642050138 
776 0 8 |i Printed edition:  |z 9783642263514 
830 0 |a Springer Monographs in Mathematics,  |x 2196-9922 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-05014-5  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)