Cargando…

Conjugate Duality in Convex Optimization

This book presents new achievements and results in the theory of conjugate duality for convex optimization problems. The perturbation approach for attaching a dual problem to a primal one makes the object of a preliminary chapter, where also an overview of the classical generalized interior point re...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bot, Radu Ioan (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2010.
Edición:1st ed. 2010.
Colección:Lecture Notes in Economics and Mathematical Systems, 637
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-04900-2
003 DE-He213
005 20220112235827.0
007 cr nn 008mamaa
008 100301s2010 gw | s |||| 0|eng d
020 |a 9783642049002  |9 978-3-642-04900-2 
024 7 |a 10.1007/978-3-642-04900-2  |2 doi 
050 4 |a T57.6-57.97 
050 4 |a T55.4-60.8 
072 7 |a KJT  |2 bicssc 
072 7 |a BUS049000  |2 bisacsh 
072 7 |a KJT  |2 thema 
082 0 4 |a 003  |2 23 
100 1 |a Bot, Radu Ioan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Conjugate Duality in Convex Optimization  |h [electronic resource] /  |c by Radu Ioan Bot. 
250 |a 1st ed. 2010. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2010. 
300 |a XII, 164 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Economics and Mathematical Systems,  |x 2196-9957 ;  |v 637 
505 0 |a Perturbation Functions and Dual Problems -- Moreau#x2013;Rockafellar Formulae and Closedness-Type Regularity Conditions -- Biconjugate Functions -- Strong and Total Conjugate Duality -- Unconventional Fenchel Duality -- Applications of the Duality to Monotone Operators. 
520 |a This book presents new achievements and results in the theory of conjugate duality for convex optimization problems. The perturbation approach for attaching a dual problem to a primal one makes the object of a preliminary chapter, where also an overview of the classical generalized interior point regularity conditions is given. A central role in the book is played by the formulation of generalized Moreau-Rockafellar formulae and closedness-type conditions, the latter constituting a new class of regularity conditions, in many situations with a wider applicability than the generalized interior point ones. The reader also receives deep insights into biconjugate calculus for convex functions, the relations between different existing strong duality notions, but also into several unconventional Fenchel duality topics. The final part of the book is consecrated to the applications of the convex duality theory in the field of monotone operators. 
650 0 |a Operations research. 
650 0 |a Management science. 
650 0 |a Mathematical optimization. 
650 0 |a System theory. 
650 0 |a Control theory. 
650 0 |a Mathematical analysis. 
650 1 4 |a Operations Research, Management Science . 
650 2 4 |a Operations Research and Decision Theory. 
650 2 4 |a Optimization. 
650 2 4 |a Systems Theory, Control . 
650 2 4 |a Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642049156 
776 0 8 |i Printed edition:  |z 9783642048999 
830 0 |a Lecture Notes in Economics and Mathematical Systems,  |x 2196-9957 ;  |v 637 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-04900-2  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)