Cargando…

Non-Standard Parameter Adaptation for Exploratory Data Analysis

Exploratory data analysis, also known as data mining or knowledge discovery from databases, is typically based on the optimisation of a specific function of a dataset. Such optimisation is often performed with gradient descent or variations thereof. In this book, we first lay the groundwork by revie...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Barbakh, Wesam Ashour (Autor), Wu, Ying (Autor), Fyfe, Colin (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:Studies in Computational Intelligence, 249
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-04005-4
003 DE-He213
005 20220115190004.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783642040054  |9 978-3-642-04005-4 
024 7 |a 10.1007/978-3-642-04005-4  |2 doi 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
072 7 |a UNF  |2 thema 
072 7 |a UYQE  |2 thema 
082 0 4 |a 006.312  |2 23 
100 1 |a Barbakh, Wesam Ashour.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Non-Standard Parameter Adaptation for Exploratory Data Analysis  |h [electronic resource] /  |c by Wesam Ashour Barbakh, Ying Wu, Colin Fyfe. 
250 |a 1st ed. 2009. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2009. 
300 |a XI, 223 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 249 
505 0 |a Review of Clustering Algorithms -- Review of Linear Projection Methods -- Non-standard Clustering Criteria -- Topographic Mappings and Kernel Clustering -- Online Clustering Algorithms and Reinforcement Learning -- Connectivity Graphs and Clustering with Similarity Functions -- Reinforcement Learning of Projections -- Cross Entropy Methods -- Artificial Immune Systems -- Conclusions. 
520 |a Exploratory data analysis, also known as data mining or knowledge discovery from databases, is typically based on the optimisation of a specific function of a dataset. Such optimisation is often performed with gradient descent or variations thereof. In this book, we first lay the groundwork by reviewing some standard clustering algorithms and projection algorithms before presenting various non-standard criteria for clustering. The family of algorithms developed are shown to perform better than the standard clustering algorithms on a variety of datasets. We then consider extensions of the basic mappings which maintain some topology of the original data space. Finally we show how reinforcement learning can be used as a clustering mechanism before turning to projection methods. We show that several varieties of reinforcement learning may also be used to define optimal projections for example for principal component analysis, exploratory projection pursuit and canonical correlation analysis. The new method of cross entropy adaptation is then introduced and used as a means of optimising projections. Finally an artificial immune system is used to create optimal projections and combinations of these three methods are shown to outperform the individual methods of optimisation. 
650 0 |a Data mining. 
650 0 |a Artificial intelligence. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 1 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Mathematical and Computational Engineering Applications. 
700 1 |a Wu, Ying.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Fyfe, Colin.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642040375 
776 0 8 |i Printed edition:  |z 9783642040047 
776 0 8 |i Printed edition:  |z 9783642260551 
830 0 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 249 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-04005-4  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)