Cargando…

Scientific Data Mining and Knowledge Discovery Principles and Foundations /

With the evolution in data storage, large databases have stimulated researchers from many areas, especially machine learning and statistics, to adopt and develop new techniques for data analysis in different fields of science. In particular, there have been notable successes in the use of statistica...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Gaber, Mohamed Medhat (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2010.
Edición:1st ed. 2010.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-02788-8
003 DE-He213
005 20220120040500.0
007 cr nn 008mamaa
008 100301s2010 gw | s |||| 0|eng d
020 |a 9783642027888  |9 978-3-642-02788-8 
024 7 |a 10.1007/978-3-642-02788-8  |2 doi 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
072 7 |a UNF  |2 thema 
072 7 |a UYQE  |2 thema 
082 0 4 |a 006.312  |2 23 
245 1 0 |a Scientific Data Mining and Knowledge Discovery  |h [electronic resource] :  |b Principles and Foundations /  |c edited by Mohamed Medhat Gaber. 
250 |a 1st ed. 2010. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2010. 
300 |a X, 400 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Background -- Machine Learning -- Statistical Inference -- The Philosophy of Science and its relation to Machine Learning -- Concept Formation in Scientific Knowledge Discovery from a Constructivist View -- Knowledge Representation and Ontologies -- Computational Science -- Spatial Techniques -- Computational Chemistry -- String Mining in Bioinformatics -- Data Mining and Knowledge Discovery -- Knowledge Discovery and Reasoning in Geospatial Applications -- Data Mining and Discovery of Chemical Knowledge -- Data Mining and Discovery of Astronomical Knowledge -- Future Trends -- On-board Data Mining -- Data Streams: An Overview and Scientific Applications. 
520 |a With the evolution in data storage, large databases have stimulated researchers from many areas, especially machine learning and statistics, to adopt and develop new techniques for data analysis in different fields of science. In particular, there have been notable successes in the use of statistical, computational, and machine learning techniques to discover scientific knowledge in the fields of biology, chemistry, physics, and astronomy. With the recent advances in ontologies and knowledge representation, automated scientific discovery (ASD) has further, great prospects in the future. The contributions in this book provide the reader with a complete view of the different tools used in the analysis of data for scientific discovery. Gaber has organized the presentation into four parts: Part I provides the reader with the necessary background in the disciplines on which scientific data mining and knowledge discovery are based. Part II details applications of computational methods used in geospatial, chemical, and bioinformatics applications. Part III is about data mining applications in geosciences, chemistry, and physics. Finally, in Part IV, future trends and directions for research are explained. The book serves as a starting point for students and researchers interested in this multidisciplinary field. It offers both an overview of the state of the art and lists areas and open issues for future research and development. 
650 0 |a Data mining. 
650 0 |a Mathematics-Data processing. 
650 0 |a Artificial intelligence. 
650 0 |a Pattern recognition systems. 
650 0 |a Chemistry-Data processing. 
650 0 |a Earth sciences. 
650 1 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Computational Science and Engineering. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Automated Pattern Recognition. 
650 2 4 |a Computational Chemistry. 
650 2 4 |a Earth Sciences. 
700 1 |a Gaber, Mohamed Medhat.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642027895 
776 0 8 |i Printed edition:  |z 9783642426247 
776 0 8 |i Printed edition:  |z 9783642027871 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-02788-8  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)