Cargando…

Automating the Design of Data Mining Algorithms An Evolutionary Computation Approach /

Data mining is a very active research area with many successful real-world app- cations. It consists of a set of concepts and methods used to extract interesting or useful knowledge (or patterns) from real-world datasets, providing valuable support for decision making in industry, business, governme...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Pappa, Gisele L. (Autor), Freitas, Alex (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2010.
Edición:1st ed. 2010.
Colección:Natural Computing Series,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-02541-9
003 DE-He213
005 20230719191937.0
007 cr nn 008mamaa
008 100301s2010 gw | s |||| 0|eng d
020 |a 9783642025419  |9 978-3-642-02541-9 
024 7 |a 10.1007/978-3-642-02541-9  |2 doi 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
072 7 |a UNF  |2 thema 
072 7 |a UYQE  |2 thema 
082 0 4 |a 006.312  |2 23 
100 1 |a Pappa, Gisele L.  |e author.  |0 (orcid)0000-0002-0349-4494  |1 https://orcid.org/0000-0002-0349-4494  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Automating the Design of Data Mining Algorithms  |h [electronic resource] :  |b An Evolutionary Computation Approach /  |c by Gisele L. Pappa, Alex Freitas. 
250 |a 1st ed. 2010. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2010. 
300 |a XIII, 187 p. 33 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Natural Computing Series,  |x 2627-6461 
505 0 |a Data Mining -- Evolutionary Algorithms -- Genetic Programming for Classification and Algorithm Design -- Automating the Design of Rule Induction Algorithms -- Computational Results on the Automatic Design of Full Rule Induction Algorithms -- Directions for Future Research on the Automatic Design of Data Mining Algorithms. 
520 |a Data mining is a very active research area with many successful real-world app- cations. It consists of a set of concepts and methods used to extract interesting or useful knowledge (or patterns) from real-world datasets, providing valuable support for decision making in industry, business, government, and science. Although there are already many types of data mining algorithms available in the literature, it is still dif cult for users to choose the best possible data mining algorithm for their particular data mining problem. In addition, data mining al- rithms have been manually designed; therefore they incorporate human biases and preferences. This book proposes a new approach to the design of data mining algorithms. - stead of relying on the slow and ad hoc process of manual algorithm design, this book proposes systematically automating the design of data mining algorithms with an evolutionary computation approach. More precisely, we propose a genetic p- gramming system (a type of evolutionary computation method that evolves c- puter programs) to automate the design of rule induction algorithms, a type of cl- si cation method that discovers a set of classi cation rules from data. We focus on genetic programming in this book because it is the paradigmatic type of machine learning method for automating the generation of programs and because it has the advantage of performing a global search in the space of candidate solutions (data mining algorithms in our case), but in principle other types of search methods for this task could be investigated in the future. 
650 0 |a Data mining. 
650 0 |a Artificial intelligence-Data processing. 
650 0 |a Artificial intelligence. 
650 1 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Data Science. 
650 2 4 |a Artificial Intelligence. 
700 1 |a Freitas, Alex.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642025426 
776 0 8 |i Printed edition:  |z 9783642025402 
776 0 8 |i Printed edition:  |z 9783642261251 
830 0 |a Natural Computing Series,  |x 2627-6461 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-02541-9  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)