Cargando…

Sensitivity Analysis for Neural Networks

Artificial neural networks are used to model systems that receive inputs and produce outputs. The relationships between the inputs and outputs and the representation parameters are critical issues in the design of related engineering systems, and sensitivity analysis concerns methods for analyzing t...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Yeung, Daniel S. (Autor), Cloete, Ian (Autor), Shi, Daming (Autor), Ng, Wing W. Y. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2010.
Edición:1st ed. 2010.
Colección:Natural Computing Series,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-02532-7
003 DE-He213
005 20230719193922.0
007 cr nn 008mamaa
008 100301s2010 gw | s |||| 0|eng d
020 |a 9783642025327  |9 978-3-642-02532-7 
024 7 |a 10.1007/978-3-642-02532-7  |2 doi 
050 4 |a Q334-342 
050 4 |a TA347.A78 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Yeung, Daniel S.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Sensitivity Analysis for Neural Networks  |h [electronic resource] /  |c by Daniel S. Yeung, Ian Cloete, Daming Shi, Wing W. Y. Ng. 
250 |a 1st ed. 2010. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2010. 
300 |a VIII, 86 p. 24 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Natural Computing Series,  |x 2627-6461 
505 0 |a to Neural Networks -- Principles of Sensitivity Analysis -- Hyper-Rectangle Model -- Sensitivity Analysis with Parameterized Activation Function -- Localized Generalization Error Model -- Critical Vector Learning for RBF Networks -- Sensitivity Analysis of Prior Knowledge1 -- Applications. 
520 |a Artificial neural networks are used to model systems that receive inputs and produce outputs. The relationships between the inputs and outputs and the representation parameters are critical issues in the design of related engineering systems, and sensitivity analysis concerns methods for analyzing these relationships. Perturbations of neural networks are caused by machine imprecision, and they can be simulated by embedding disturbances in the original inputs or connection weights, allowing us to study the characteristics of a function under small perturbations of its parameters. This is the first book to present a systematic description of sensitivity analysis methods for artificial neural networks. It covers sensitivity analysis of multilayer perceptron neural networks and radial basis function neural networks, two widely used models in the machine learning field. The authors examine the applications of such analysis in tasks such as feature selection, sample reduction, and network optimization. The book will be useful for engineers applying neural network sensitivity analysis to solve practical problems, and for researchers interested in foundational problems in neural networks. 
650 0 |a Artificial intelligence. 
650 0 |a Control engineering. 
650 0 |a Robotics. 
650 0 |a Automation. 
650 0 |a System theory. 
650 0 |a Pattern recognition systems. 
650 0 |a Computer simulation. 
650 0 |a Engineering design. 
650 1 4 |a Artificial Intelligence. 
650 2 4 |a Control, Robotics, Automation. 
650 2 4 |a Complex Systems. 
650 2 4 |a Automated Pattern Recognition. 
650 2 4 |a Computer Modelling. 
650 2 4 |a Engineering Design. 
700 1 |a Cloete, Ian.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Shi, Daming.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Ng, Wing W. Y.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642025334 
776 0 8 |i Printed edition:  |z 9783642025310 
776 0 8 |i Printed edition:  |z 9783642261398 
830 0 |a Natural Computing Series,  |x 2627-6461 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-02532-7  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)