Cargando…

Smooth Ergodic Theory for Endomorphisms

This volume presents a general smooth ergodic theory for deterministic dynamical systems generated by non-invertible endomorphisms, mainly concerning the relations between entropy, Lyapunov exponents and dimensions. The authors make extensive use of the combination of the inverse limit space techniq...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Qian, Min (Autor), Xie, Jian-Sheng (Autor), Zhu, Shu (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:Lecture Notes in Mathematics, 1978
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-01954-8
003 DE-He213
005 20220113125051.0
007 cr nn 008mamaa
008 100715s2009 gw | s |||| 0|eng d
020 |a 9783642019548  |9 978-3-642-01954-8 
024 7 |a 10.1007/978-3-642-01954-8  |2 doi 
050 4 |a QA843-871 
072 7 |a GPFC  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a GPFC  |2 thema 
082 0 4 |a 515.39  |2 23 
100 1 |a Qian, Min.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Smooth Ergodic Theory for Endomorphisms  |h [electronic resource] /  |c by Min Qian, Jian-Sheng Xie, Shu Zhu. 
250 |a 1st ed. 2009. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2009. 
300 |a XIII, 277 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 1978 
505 0 |a Preliminaries -- Margulis-Ruelle Inequality -- Expanding Maps -- Axiom A Endomorphisms -- Unstable and Stable Manifolds for Endomorphisms -- Pesin#x2019;s Entropy Formula for Endomorphisms -- SRB Measures and Pesin#x2019;s Entropy Formula for Endomorphisms -- Ergodic Property of Lyapunov Exponents -- Generalized Entropy Formula -- Exact Dimensionality of Hyperbolic Measures. 
520 |a This volume presents a general smooth ergodic theory for deterministic dynamical systems generated by non-invertible endomorphisms, mainly concerning the relations between entropy, Lyapunov exponents and dimensions. The authors make extensive use of the combination of the inverse limit space technique and the techniques developed to tackle random dynamical systems. The most interesting results in this book are (1) the equivalence between the SRB property and Pesin's entropy formula; (2) the generalized Ledrappier-Young entropy formula; (3) exact-dimensionality for weakly hyperbolic diffeomorphisms and for expanding maps. The proof of the exact-dimensionality for weakly hyperbolic diffeomorphisms seems more accessible than that of Barreira et al. It also inspires the authors to argue to what extent the famous Eckmann-Ruelle conjecture and many other classical results for diffeomorphisms and for flows hold true. After a careful reading of the book, one can systematically learn the Pesin theory for endomorphisms as well as the typical tricks played in the estimation of the number of balls of certain properties, which are extensively used in Chapters IX and X. 
650 0 |a Dynamical systems. 
650 0 |a Mechanical engineering. 
650 1 4 |a Dynamical Systems. 
650 2 4 |a Mechanical Engineering. 
700 1 |a Xie, Jian-Sheng.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Zhu, Shu.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642019555 
776 0 8 |i Printed edition:  |z 9783642019531 
830 0 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 1978 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-01954-8  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)