Cargando…

Transfer in Reinforcement Learning Domains

In reinforcement learning (RL) problems, learning agents sequentially execute actions with the goal of maximizing a reward signal. The RL framework has gained popularity with the development of algorithms capable of mastering increasingly complex problems, but learning difficult tasks is often slow...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Taylor, Matthew (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:Studies in Computational Intelligence, 216
Temas:
Acceso en línea:Texto Completo
Tabla de Contenidos:
  • Reinforcement Learning Background
  • Related Work
  • Empirical Domains
  • Value Function Transfer via Inter-Task Mappings
  • Extending Transfer via Inter-Task Mappings
  • Transfer between Different Reinforcement Learning Methods
  • Learning Inter-Task Mappings
  • Conclusion and Future Work.