Cargando…

Foundations of Computational Intelligence Volume 5 Function Approximation and Classification /

Approximation theory is that area of analysis which is concerned with the ability to approximate functions by simpler and more easily calculated functions. It is an area which, like many other fields of analysis, has its primary roots in the mathematics.The need for function approximation and classi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Abraham, Ajith (Editor ), Hassanien, Aboul-Ella (Editor ), Snášel, Vaclav (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:Studies in Computational Intelligence, 205
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-01536-6
003 DE-He213
005 20220114222402.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783642015366  |9 978-3-642-01536-6 
024 7 |a 10.1007/978-3-642-01536-6  |2 doi 
050 4 |a TA329-348 
050 4 |a TA345-345.5 
072 7 |a TBJ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a TBJ  |2 thema 
082 0 4 |a 620  |2 23 
245 1 0 |a Foundations of Computational Intelligence Volume 5  |h [electronic resource] :  |b Function Approximation and Classification /  |c edited by Ajith Abraham, Aboul-Ella Hassanien, Vaclav Snášel. 
250 |a 1st ed. 2009. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2009. 
300 |a X, 376 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 205 
505 0 |a Function Approximation and Classification: Theoretical Foundations -- Feature Selection for Partial Least Square Based Dimension Reduction -- Classification by the Use of Decomposition of Correlation Integral -- Investigating Neighborhood Graphs for Inducing Density Based Clusters -- Some Issues on Extensions of Information and Dynamic Information Systems -- A Probabilistic Approach to the Evaluation and Combination of Preferences -- Use of the q-Gaussian Function in Radial Basis Function Networks -- Function Approximation and Classification: Success Stories and Real World Applications -- Novel Biomarkers for Prostate Cancer Revealed by (?,?)-k-Feature Sets -- A Tutorial on Multi-label Classification Techniques -- Computational Intelligence in Biomedical Image Processing -- A Comparative Study of Three Graph Edit Distance Algorithms -- Classification of Complex Molecules -- Intelligent Finite Element Method and Application to Simulation of Behavior of Soils under Cyclic Loading -- An Empirical Evaluation of the Effectiveness of Different Types of Predictor Attributes in Protein Function Prediction -- Genetic Selection Algorithm and Cloning for Data Mining with GMDH Method. 
520 |a Approximation theory is that area of analysis which is concerned with the ability to approximate functions by simpler and more easily calculated functions. It is an area which, like many other fields of analysis, has its primary roots in the mathematics.The need for function approximation and classification arises in many branches of applied mathematics, computer science and data mining in particular. This edited volume comprises of 14 chapters, including several overview Chapters, which provides an up-to-date and state-of-the art research covering the theory and algorithms of function approximation and classification. Besides research articles and expository papers on theory and algorithms of function approximation and classification, papers on numerical experiments and real world applications were also encouraged. The Volume is divided into 2 parts: Part-I: Function Approximation and Classification - Theoretical Foundations and Part-II: Function Approximation and Classification - Success Stories and Real World Applications. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 0 |a Artificial intelligence. 
650 1 4 |a Mathematical and Computational Engineering Applications. 
650 2 4 |a Artificial Intelligence. 
700 1 |a Abraham, Ajith.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Hassanien, Aboul-Ella.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Snášel, Vaclav.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642015373 
776 0 8 |i Printed edition:  |z 9783642015359 
776 0 8 |i Printed edition:  |z 9783642424397 
830 0 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 205 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-01536-6  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)