Cargando…

Adaptive Differential Evolution A Robust Approach to Multimodal Problem Optimization /

Optimization problems are ubiquitous in academic research and real-world applications wherever such resources as space, time and cost are limited. Researchers and practitioners need to solve problems fundamental to their daily work which, however, may show a variety of challenging characteristics su...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Zhang, Jingqiao (Autor), Sanderson, Arthur C. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:Adaptation, Learning, and Optimization, 1
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-01527-4
003 DE-He213
005 20220113064522.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783642015274  |9 978-3-642-01527-4 
024 7 |a 10.1007/978-3-642-01527-4  |2 doi 
050 4 |a TA342-343 
072 7 |a PBWH  |2 bicssc 
072 7 |a TBJ  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a PBWH  |2 thema 
072 7 |a TBJ  |2 thema 
082 0 4 |a 003.3  |2 23 
100 1 |a Zhang, Jingqiao.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Adaptive Differential Evolution  |h [electronic resource] :  |b A Robust Approach to Multimodal Problem Optimization /  |c by Jingqiao Zhang, Arthur C. Sanderson. 
250 |a 1st ed. 2009. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2009. 
300 |a XIII, 164 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Adaptation, Learning, and Optimization,  |x 1867-4542 ;  |v 1 
505 0 |a Related Work and Background -- Theoretical Analysis of Differential Evolution -- Parameter Adaptive Differential Evolution -- Surrogate Model-Based Differential Evolution -- Adaptive Multi-objective Differential Evolution -- Application to Winner Determination Problems in Combinatorial Auctions -- Application to Flight Planning in Air Traffic Control Systems -- Application to the TPM Optimization in Credit Decision Making -- Conclusions and Future Work. 
520 |a Optimization problems are ubiquitous in academic research and real-world applications wherever such resources as space, time and cost are limited. Researchers and practitioners need to solve problems fundamental to their daily work which, however, may show a variety of challenging characteristics such as discontinuity, nonlinearity, nonconvexity, and multimodality. It is expected that solving a complex optimization problem itself should easy to use, reliable and efficient to achieve satisfactory solutions. Differential evolution is a recent branch of evolutionary algorithms that is capable of addressing a wide set of complex optimization problems in a relatively uniform and conceptually simple manner. For better performance, the control parameters of differential evolution need to be set appropriately as they have different effects on evolutionary search behaviours for various problems or at different optimization stages of a single problem. The fundamental theme of the book is theoretical study of differential evolution and algorithmic analysis of parameter adaptive schemes. Topics covered in this book include: Theoretical analysis of differential evolution and its control parameters Algorithmic design and comparative analysis of parameter adaptive schemes Scalability analysis of adaptive differential evolution Adaptive differential evolution for multi-objective optimization Incorporation of surrogate model for computationally expensive optimization Application to winner determination in combinatorial auctions of E-Commerce Application to flight route planning in Air Traffic Management Application to transition probability matrix optimization in credit-decision making. 
650 0 |a Mathematical models. 
650 0 |a Artificial intelligence. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 0 |a Operations research. 
650 0 |a Mathematics. 
650 1 4 |a Mathematical Modeling and Industrial Mathematics. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Mathematical and Computational Engineering Applications. 
650 2 4 |a Operations Research and Decision Theory. 
650 2 4 |a Applications of Mathematics. 
700 1 |a Sanderson, Arthur C.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642015281 
776 0 8 |i Printed edition:  |z 9783642015267 
776 0 8 |i Printed edition:  |z 9783642260216 
830 0 |a Adaptation, Learning, and Optimization,  |x 1867-4542 ;  |v 1 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-01527-4  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)