Cargando…

Quantum Trajectories and Measurements in Continuous Time The Diffusive Case /

This course-based monograph introduces the reader to the theory of continuous measurements in quantum mechanics and provides some benchmark applications. The approach chosen, quantum trajectory theory, is based on the stochastic Schrödinger and master equations, which determine the evolution of the...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Barchielli, Alberto (Autor), Gregoratti, Matteo (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:Lecture Notes in Physics, 782
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-01298-3
003 DE-He213
005 20220127134409.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783642012983  |9 978-3-642-01298-3 
024 7 |a 10.1007/978-3-642-01298-3  |2 doi 
050 4 |a QC630-648 
072 7 |a PHK  |2 bicssc 
072 7 |a SCI021000  |2 bisacsh 
072 7 |a PHK  |2 thema 
082 0 4 |a 537.6  |2 23 
100 1 |a Barchielli, Alberto.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Quantum Trajectories and Measurements in Continuous Time  |h [electronic resource] :  |b The Diffusive Case /  |c by Alberto Barchielli, Matteo Gregoratti. 
250 |a 1st ed. 2009. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2009. 
300 |a XIV, 325 p. 30 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Physics,  |x 1616-6361 ;  |v 782 
505 0 |a I General theory -- The Stochastic Schr#x00F6;dinger Equation -- The Stochastic Master Equation: Part I -- Continuous Measurements and Instruments -- The Stochastic Master Equation: Part II -- Mutual Entropies and Information Gain in Quantum Continuous Measurements -- II Physical applications -- Quantum Optical Systems -- A Two-Level Atom: General Setup -- A Two-Level Atom: Heterodyne and Homodyne Spectra -- Feedback. 
520 |a This course-based monograph introduces the reader to the theory of continuous measurements in quantum mechanics and provides some benchmark applications. The approach chosen, quantum trajectory theory, is based on the stochastic Schrödinger and master equations, which determine the evolution of the a-posteriori state of a continuously observed quantum system and give the distribution of the measurement output. The present introduction is restricted to finite-dimensional quantum systems and diffusive outputs. Two appendices introduce the tools of probability theory and quantum measurement theory which are needed for the theoretical developments in the first part of the book. First, the basic equations of quantum trajectory theory are introduced, with all their mathematical properties, starting from the existence and uniqueness of their solutions. This makes the text also suitable for other applications of the same stochastic differential equations in different fields such as simulations of master equations or dynamical reduction theories. In the next step the equivalence between the stochastic approach and the theory of continuous measurements is demonstrated. To conclude the theoretical exposition, the properties of the output of the continuous measurement are analyzed in detail. This is a stochastic process with its own distribution, and the reader will learn how to compute physical quantities such as its moments and its spectrum. In particular this last concept is introduced with clear and explicit reference to the measurement process. The two-level atom is used as the basic prototype to illustrate the theory in a concrete application. Quantum phenomena appearing in the spectrum of the fluorescence light, such as Mollow's triplet structure, squeezing of the fluorescence light, and the linewidth narrowing, are presented. Last but not least, the theory of quantum continuous measurements is the natural starting point to develop a feedback control theory in continuous time for quantum systems. The two-level atom is again used to introduce and study an example of feedback based on the observed output. 
650 0 |a Electrodynamics. 
650 0 |a Mathematics. 
650 0 |a Quantum physics. 
650 0 |a Mathematical physics. 
650 0 |a Quantum optics. 
650 0 |a System theory. 
650 1 4 |a Classical Electrodynamics. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Quantum Physics. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Quantum Optics. 
650 2 4 |a Complex Systems. 
700 1 |a Gregoratti, Matteo.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642012990 
776 0 8 |i Printed edition:  |z 9783642242489 
776 0 8 |i Printed edition:  |z 9783642012976 
830 0 |a Lecture Notes in Physics,  |x 1616-6361 ;  |v 782 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-01298-3  |z Texto Completo 
912 |a ZDB-2-PHA 
912 |a ZDB-2-SXP 
912 |a ZDB-2-LNP 
950 |a Physics and Astronomy (SpringerNature-11651) 
950 |a Physics and Astronomy (R0) (SpringerNature-43715)