Cargando…

Foundations of Computational Intelligence Volume 6: Data Mining /

Finding information hidden in data is as theoretically difficult as it is practically important. With the objective of discovering unknown patterns from data, the methodologies of data mining were derived from statistics, machine learning, and artificial intelligence, and are being used successfully...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Abraham, Ajith (Editor ), Hassanien, Aboul-Ella (Editor ), Carvalho, André Ponce de Leon F. de (Editor ), Snášel, Vaclav (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:Studies in Computational Intelligence, 206
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-01091-0
003 DE-He213
005 20220119201327.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783642010910  |9 978-3-642-01091-0 
024 7 |a 10.1007/978-3-642-01091-0  |2 doi 
050 4 |a TA329-348 
050 4 |a TA345-345.5 
072 7 |a TBJ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a TBJ  |2 thema 
082 0 4 |a 620  |2 23 
245 1 0 |a Foundations of Computational Intelligence  |h [electronic resource] :  |b Volume 6: Data Mining /  |c edited by Ajith Abraham, Aboul-Ella Hassanien, André Ponce de Leon F. de Carvalho, Vaclav Snášel. 
250 |a 1st ed. 2009. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2009. 
300 |a X, 400 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 206 
505 0 |a Data Click Streams and Temporal Data Mining -- Mining and Analysis of Clickstream Patterns -- An Overview on Mining Data Streams -- Data Stream Mining Using Granularity-Based Approach -- Time Granularity in Temporal Data Mining -- Mining User Preference Model from Utterances -- Text and Rule Mining -- Text Summarization: An Old Challenge and New Approaches -- From Faceted Classification to Knowledge Discovery of Semi-structured Text Records -- Multi-value Association Patterns and Data Mining -- Clustering Time Series Data: An Evolutionary Approach -- Support Vector Clustering: From Local Constraint to Global Stability -- New Algorithms for Generation Decision Trees-Ant-Miner and Its Modifications -- Data Mining Applications -- Automated Incremental Building of Weighted Semantic Web Repository -- A Data Mining Approach for Adaptive Path Planning on Large Road Networks -- Linear Models for Visual Data Mining in Medical Images -- A Framework for Composing Knowledge Discovery Workflows in Grids -- Distributed Data Clustering: A Comparative Analysis. 
520 |a Finding information hidden in data is as theoretically difficult as it is practically important. With the objective of discovering unknown patterns from data, the methodologies of data mining were derived from statistics, machine learning, and artificial intelligence, and are being used successfully in application areas such as bioinformatics, business, health care, banking, retail, and many others. Advanced representation schemes and computational intelligence techniques such as rough sets, neural networks; decision trees; fuzzy logic; evolutionary algorithms; artificial immune systems; swarm intelligence; reinforcement learning, association rule mining, Web intelligence paradigms etc. have proved valuable when they are applied to Data Mining problems. Computational tools or solutions based on intelligent systems are being used with great success in Data Mining applications. It is also observed that strong scientific advances have been made when issues from different research areas are integrated. This Volume comprises of 15 chapters including an overview chapter providing an up-to-date and state-of-the research on the applications of Computational Intelligence techniques for Data Mining. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 0 |a Artificial intelligence. 
650 1 4 |a Mathematical and Computational Engineering Applications. 
650 2 4 |a Artificial Intelligence. 
700 1 |a Abraham, Ajith.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Hassanien, Aboul-Ella.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Carvalho, André Ponce de Leon F. de.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Snášel, Vaclav.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642010927 
776 0 8 |i Printed edition:  |z 9783642101670 
776 0 8 |i Printed edition:  |z 9783642010903 
830 0 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 206 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-01091-0  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)