Cargando…

Foundations of Computational Intelligence Volume 3 Global Optimization /

Global optimization is a branch of applied mathematics and numerical analysis that deals with the task of finding the absolutely best set of admissible conditions to satisfy certain criteria / objective function(s), formulated in mathematical terms. Global optimization includes nonlinear, stochastic...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Abraham, Ajith (Editor ), Hassanien, Aboul-Ella (Editor ), Siarry, Patrick (Editor ), Engelbrecht, Andries (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:Studies in Computational Intelligence, 203
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-01085-9
003 DE-He213
005 20220120161938.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783642010859  |9 978-3-642-01085-9 
024 7 |a 10.1007/978-3-642-01085-9  |2 doi 
050 4 |a Q334-342 
050 4 |a TA347.A78 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Foundations of Computational Intelligence Volume 3  |h [electronic resource] :  |b Global Optimization /  |c edited by Ajith Abraham, Aboul-Ella Hassanien, Patrick Siarry, Andries Engelbrecht. 
250 |a 1st ed. 2009. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2009. 
300 |a XII, 528 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 203 
505 0 |a Global Optimization Algorithms: Theoretical Foundations and Perspectives -- Genetic Algorithms for the Use in Combinatorial Problems -- Bacterial Foraging Optimization Algorithm: Theoretical Foundations, Analysis, and Applications -- Global Optimization Using Harmony Search: Theoretical Foundations and Applications -- Hybrid GRASP Heuristics -- Particle Swarm Optimization: Performance Tuning and Empirical Analysis -- Tabu Search to Solve Real-Life Combinatorial Optimization Problems: A Case of Study -- Reformulations in Mathematical Programming: A Computational Approach -- Graph-Based Local Elimination Algorithms in Discrete Optimization -- Evolutionary Approach to Solving Non-stationary Dynamic Multi-Objective Problems -- Turbulent Particle Swarm Optimization Using Fuzzy Parameter Tuning -- Global Optimization Algorithms: Applications -- An Evolutionary Approximation for the Coefficients of Decision Functions within a Support Vector Machine Learning Strategy -- Evolutionary Computing in Statistical Data Analysis -- Meta-heuristics for System Design Engineering -- Transgenetic Algorithm: A New Endosymbiotic Approach for Evolutionary Algorithms -- Multi-objective Team Forming Optimization for Integrated Product Development Projects -- Genetic Algorithms for Task Scheduling Problem -- PSO_Bounds: A New Hybridization Technique of PSO and EDAs. 
520 |a Global optimization is a branch of applied mathematics and numerical analysis that deals with the task of finding the absolutely best set of admissible conditions to satisfy certain criteria / objective function(s), formulated in mathematical terms. Global optimization includes nonlinear, stochastic and combinatorial programming, multiobjective programming, control, games, geometry, approximation, algorithms for parallel architectures and so on. Due to its wide usage and applications, it has gained the attention of researchers and practitioners from a plethora of scientific domains. Typical practical examples of global optimization applications include: Traveling salesman problem and electrical circuit design (minimize the path length); safety engineering (building and mechanical structures); mathematical problems (Kepler conjecture); Protein structure prediction (minimize the energy function) etc. Global Optimization algorithms may be categorized into several types: Deterministic (example: branch and bound methods), Stochastic optimization (example: simulated annealing). Heuristics and meta-heuristics (example: evolutionary algorithms) etc. Recently there has been a growing interest in combining global and local search strategies to solve more complicated optimization problems. This edited volume comprises 17 chapters, including several overview Chapters, which provides an up-to-date and state-of-the art research covering the theory and algorithms of global optimization. Besides research articles and expository papers on theory and algorithms of global optimization, papers on numerical experiments and on real world applications were also encouraged. The book is divided into 2 main parts. 
650 0 |a Artificial intelligence. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 1 4 |a Artificial Intelligence. 
650 2 4 |a Mathematical and Computational Engineering Applications. 
700 1 |a Abraham, Ajith.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Hassanien, Aboul-Ella.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Siarry, Patrick.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Engelbrecht, Andries.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642010866 
776 0 8 |i Printed edition:  |z 9783642101656 
776 0 8 |i Printed edition:  |z 9783642010842 
830 0 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 203 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-01085-9  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)