Cargando…

Tuning Metaheuristics A Machine Learning Perspective /

The importance of tuning metaheuristics is widely acknowledged in scientific literature. However, there is very little dedicated research on the subject. Typically, scientists and practitioners tune metaheuristics by hand, guided only by their experience and by some rules of thumb. Tuning metaheuris...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Birattari, Mauro (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:Studies in Computational Intelligence, 197
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-00483-4
003 DE-He213
005 20220119022038.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783642004834  |9 978-3-642-00483-4 
024 7 |a 10.1007/978-3-642-00483-4  |2 doi 
050 4 |a T57-57.97 
072 7 |a PBW  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a PBW  |2 thema 
082 0 4 |a 519  |2 23 
100 1 |a Birattari, Mauro.  |e author.  |0 (orcid)0000-0003-3309-2194  |1 https://orcid.org/0000-0003-3309-2194  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Tuning Metaheuristics  |h [electronic resource] :  |b A Machine Learning Perspective /  |c by Mauro Birattari. 
250 |a 1st ed. 2009. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2009. 
300 |a X, 221 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 197 
505 0 |a Background and State-of-the-Art -- Statement of the Tuning Problem -- F-Race for Tuning Metaheuristics -- Experiments and Applications -- Some Considerations on the Experimental Methodology -- Conclusions. 
520 |a The importance of tuning metaheuristics is widely acknowledged in scientific literature. However, there is very little dedicated research on the subject. Typically, scientists and practitioners tune metaheuristics by hand, guided only by their experience and by some rules of thumb. Tuning metaheuristics is often considered to be more of an art than a science. This book lays the foundations for a scientific approach to tuning metaheuristics. The fundamental intuition that underlies Birattari's approach is that the tuning problem has much in common with the problems that are typically faced in machine learning. By adopting a machine learning perspective, the author gives a formal definition of the tuning problem, develops a generic algorithm for tuning metaheuristics, and defines an appropriate experimental methodology for assessing the performance of metaheuristics. 
650 0 |a Mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 0 |a Artificial intelligence. 
650 1 4 |a Applications of Mathematics. 
650 2 4 |a Mathematical and Computational Engineering Applications. 
650 2 4 |a Artificial Intelligence. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642101496 
776 0 8 |i Printed edition:  |z 9783642005459 
776 0 8 |i Printed edition:  |z 9783642004827 
830 0 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 197 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-00483-4  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)