Cargando…

Evolutionary Multi-objective Optimization in Uncertain Environments Issues and Algorithms /

Evolutionary algorithms are sophisticated search methods that have been found to be very efficient and effective in solving complex real-world multi-objective problems where conventional optimization tools fail to work well. Despite the tremendous amount of work done in the development of these algo...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Goh, Chi-Keong (Autor), Tan, Kay Chen (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:Studies in Computational Intelligence, 186
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-95976-2
003 DE-He213
005 20220118162721.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783540959762  |9 978-3-540-95976-2 
024 7 |a 10.1007/978-3-540-95976-2  |2 doi 
050 4 |a TA345-345.5 
072 7 |a UGC  |2 bicssc 
072 7 |a COM007000  |2 bisacsh 
072 7 |a UGC  |2 thema 
082 0 4 |a 670.285  |2 23 
100 1 |a Goh, Chi-Keong.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Evolutionary Multi-objective Optimization in Uncertain Environments  |h [electronic resource] :  |b Issues and Algorithms /  |c by Chi-Keong Goh, Kay Chen Tan. 
250 |a 1st ed. 2009. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2009. 
300 |a XI, 271 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 186 
505 0 |a I: Evolving Solution Sets in the Presence of Noise -- Noisy Evolutionary Multi-objective Optimization -- Handling Noise in Evolutionary Multi-objective Optimization -- Handling Noise in Evolutionary Neural Network Design -- II: Tracking Dynamic Multi-objective Landscapes -- Dynamic Evolutionary Multi-objective Optimization -- A Coevolutionary Paradigm for Dynamic Multi-Objective Optimization -- III: Evolving Robust Solution Sets -- Robust Evolutionary Multi-objective Optimization -- Evolving Robust Solutions in Multi-Objective Optimization -- Evolving Robust Routes -- Final Thoughts. 
520 |a Evolutionary algorithms are sophisticated search methods that have been found to be very efficient and effective in solving complex real-world multi-objective problems where conventional optimization tools fail to work well. Despite the tremendous amount of work done in the development of these algorithms in the past decade, many researchers assume that the optimization problems are deterministic and uncertainties are rarely examined. The primary motivation of this book is to provide a comprehensive introduction on the design and application of evolutionary algorithms for multi-objective optimization in the presence of uncertainties. In this book, we hope to expose the readers to a range of optimization issues and concepts, and to encourage a greater degree of appreciation of evolutionary computation techniques and the exploration of new ideas that can better handle uncertainties. "Evolutionary Multi-Objective Optimization in Uncertain Environments: Issues and Algorithms" is intended for a wide readership and will be a valuable reference for engineers, researchers, senior undergraduates and graduate students who are interested in the areas of evolutionary multi-objective optimization and uncertainties. 
650 0 |a Computer-aided engineering. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computer-Aided Engineering (CAD, CAE) and Design. 
650 2 4 |a Mathematical and Computational Engineering Applications. 
650 2 4 |a Artificial Intelligence. 
700 1 |a Tan, Kay Chen.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642101137 
776 0 8 |i Printed edition:  |z 9783642001246 
776 0 8 |i Printed edition:  |z 9783540959755 
830 0 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 186 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-95976-2  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)