Cargando…

Evolutionary Multi-objective Optimization in Uncertain Environments Issues and Algorithms /

Evolutionary algorithms are sophisticated search methods that have been found to be very efficient and effective in solving complex real-world multi-objective problems where conventional optimization tools fail to work well. Despite the tremendous amount of work done in the development of these algo...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Goh, Chi-Keong (Autor), Tan, Kay Chen (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:Studies in Computational Intelligence, 186
Temas:
Acceso en línea:Texto Completo
Descripción
Sumario:Evolutionary algorithms are sophisticated search methods that have been found to be very efficient and effective in solving complex real-world multi-objective problems where conventional optimization tools fail to work well. Despite the tremendous amount of work done in the development of these algorithms in the past decade, many researchers assume that the optimization problems are deterministic and uncertainties are rarely examined. The primary motivation of this book is to provide a comprehensive introduction on the design and application of evolutionary algorithms for multi-objective optimization in the presence of uncertainties. In this book, we hope to expose the readers to a range of optimization issues and concepts, and to encourage a greater degree of appreciation of evolutionary computation techniques and the exploration of new ideas that can better handle uncertainties. "Evolutionary Multi-Objective Optimization in Uncertain Environments: Issues and Algorithms" is intended for a wide readership and will be a valuable reference for engineers, researchers, senior undergraduates and graduate students who are interested in the areas of evolutionary multi-objective optimization and uncertainties.
Descripción Física:XI, 271 p. online resource.
ISBN:9783540959762
ISSN:1860-9503 ;