|
|
|
|
LEADER |
00000nam a22000005i 4500 |
001 |
978-3-540-93913-9 |
003 |
DE-He213 |
005 |
20220116171615.0 |
007 |
cr nn 008mamaa |
008 |
100301s2009 gw | s |||| 0|eng d |
020 |
|
|
|a 9783540939139
|9 978-3-540-93913-9
|
024 |
7 |
|
|a 10.1007/978-3-540-93913-9
|2 doi
|
050 |
|
4 |
|a QA564-609
|
072 |
|
7 |
|a PBMW
|2 bicssc
|
072 |
|
7 |
|a MAT012010
|2 bisacsh
|
072 |
|
7 |
|a PBMW
|2 thema
|
082 |
0 |
4 |
|a 516.35
|2 23
|
100 |
1 |
|
|a Mochizuki, Takuro.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
245 |
1 |
0 |
|a Donaldson Type Invariants for Algebraic Surfaces
|h [electronic resource] :
|b Transition of Moduli Stacks /
|c by Takuro Mochizuki.
|
250 |
|
|
|a 1st ed. 2009.
|
264 |
|
1 |
|a Berlin, Heidelberg :
|b Springer Berlin Heidelberg :
|b Imprint: Springer,
|c 2009.
|
300 |
|
|
|a XXIII, 383 p.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Lecture Notes in Mathematics,
|x 1617-9692 ;
|v 1972
|
505 |
0 |
|
|a Preliminaries -- Parabolic L-Bradlow Pairs -- Geometric Invariant Theory and Enhanced Master Space -- Obstruction Theories of Moduli Stacks and Master Spaces -- Virtual Fundamental Classes -- Invariants.
|
520 |
|
|
|a We are defining and studying an algebro-geometric analogue of Donaldson invariants by using moduli spaces of semistable sheaves with arbitrary ranks on a polarized projective surface.We are interested in relations among the invariants, which are natural generalizations of the "wall-crossing formula" and the "Witten conjecture" for classical Donaldson invariants. Our goal is to obtain a weaker version of these relations, by systematically using the intrinsic smoothness of moduli spaces. According to the recent excellent work of L. Goettsche, H. Nakajima and K. Yoshioka, the wall-crossing formula for Donaldson invariants of projective surfaces can be deduced from such a weaker result in the rank two case!
|
650 |
|
0 |
|a Algebraic geometry.
|
650 |
1 |
4 |
|a Algebraic Geometry.
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer Nature eBook
|
776 |
0 |
8 |
|i Printed edition:
|z 9783540939740
|
776 |
0 |
8 |
|i Printed edition:
|z 9783540939122
|
830 |
|
0 |
|a Lecture Notes in Mathematics,
|x 1617-9692 ;
|v 1972
|
856 |
4 |
0 |
|u https://doi.uam.elogim.com/10.1007/978-3-540-93913-9
|z Texto Completo
|
912 |
|
|
|a ZDB-2-SMA
|
912 |
|
|
|a ZDB-2-SXMS
|
912 |
|
|
|a ZDB-2-LNM
|
950 |
|
|
|a Mathematics and Statistics (SpringerNature-11649)
|
950 |
|
|
|a Mathematics and Statistics (R0) (SpringerNature-43713)
|