Cargando…

Modelling Dynamics in Processes and Systems

Dynamics is what characterizes virtually all phenomenae we face in the real world, and processes that proceed in practically all kinds of inanimate and animate systems, notably social systems. For our purposes dynamics is viewed as time evolution of some characteristic features of the phenomenae or...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Mitkowski, Wojciech (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:Studies in Computational Intelligence, 180
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-92203-2
003 DE-He213
005 20220114101832.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783540922032  |9 978-3-540-92203-2 
024 7 |a 10.1007/978-3-540-92203-2  |2 doi 
050 4 |a QA71-90 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT006000  |2 bisacsh 
072 7 |a PBKS  |2 thema 
082 0 4 |a 518  |2 23 
245 1 0 |a Modelling Dynamics in Processes and Systems  |h [electronic resource] /  |c edited by Wojciech Mitkowski. 
250 |a 1st ed. 2009. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2009. 
300 |a XII, 192 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 180 
505 0 |a Basic Tools and Techniques for the Modelling of Dynamics -- Modeling of Chaotic Systems in the ChaoPhS Program -- Model of a Tribological Sensor Contacting Rotating Disc -- The Bifurcations and Chaotic Oscillations in Electric Circuits with Arc -- Modelling Dynamics in Control and Robotics -- Soft Computing Models for Intelligent Control of Non-linear Dynamical Systems -- Model Reference Adaptive Control of Underwater Robot in Spatial Motion -- Feedback Stabilization of Distributed Parameter Gyroscopic Systems -- Stabilization Results of Second-Order Systems with Delayed Positive Feedback -- Modelling Dynamics in Biological Processes -- A Comparison of Modeling Approaches for the Spread of Prion Diseases in the Brain -- Ensemble Modeling for Bio-medical Applications -- New Application Areas -- Automatic Fingerprint Identification Based on Minutiae Points -- Image Filtering Using the Dynamic Particles Method -- The Simulation of Cyclic Thermal Swing Adsorption (TSA) Process -- The Stress Field Induced Diffusion. 
520 |a Dynamics is what characterizes virtually all phenomenae we face in the real world, and processes that proceed in practically all kinds of inanimate and animate systems, notably social systems. For our purposes dynamics is viewed as time evolution of some characteristic features of the phenomenae or processes under consideration. It is obvious that in virtually all non-trivial problems dynamics can not be neglected, and should be taken into account in the analyses to, first, get insight into the problem consider, and second, to be able to obtain meaningful results. A convenient tool to deal with dynamics and its related evolution over time is to use the concept of a dynamic system which, for the purposes of this volume can be characterized by the input (control), state and output spaces, and a state transition equation. Then, starting from an initial state, we can find a sequence of consecutive states (outputs) under consecutive inputs (controls). That is, we obtain a trajectory. The state transition equation may be given in various forms, exemplified by differential and difference equations, linear or nonlinear, deterministic or stochastic, or even fuzzy (imprecisely specified), fully or partially known, etc. These features can give rise to various problems the analysts may encounter like numerical difficulties, instability, strange forms of behavior (e.g. chaotic), etc. This volume is concerned with some modern tools and techniques which can be useful for the modeling of dynamics. We focus our attention on two important areas which play a key role nowadays, namely automation and robotics, and biological systems. We also add some new applications which can greatly benefit from the availability of effective and efficient tools for modeling dynamics, exemplified by some applications in security systems. 
650 0 |a Mathematics-Data processing. 
650 0 |a Mathematical models. 
650 0 |a Computer science-Mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 0 |a Artificial intelligence. 
650 0 |a Control engineering. 
650 0 |a Robotics. 
650 0 |a Automation. 
650 1 4 |a Computational Mathematics and Numerical Analysis. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
650 2 4 |a Mathematics of Computing. 
650 2 4 |a Mathematical and Computational Engineering Applications. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Control, Robotics, Automation. 
700 1 |a Mitkowski, Wojciech.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540922858 
776 0 8 |i Printed edition:  |z 9783540922025 
776 0 8 |i Printed edition:  |z 9783642100758 
830 0 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 180 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-92203-2  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)