Cargando…

Modeling Uncertainty with Fuzzy Logic With Recent Theory and Applications /

The objective of this book is to present an uncertainty modeling approach using a new type of fuzzy system model via "Fuzzy Functions". Since most researchers on fuzzy systems are more familiar with the standard fuzzy rule bases and their inference system structures, many standard tools of...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Celikyilmaz, Asli (Autor), Türksen, I. Burhan (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:Studies in Fuzziness and Soft Computing, 240
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-89924-2
003 DE-He213
005 20220120210836.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783540899242  |9 978-3-540-89924-2 
024 7 |a 10.1007/978-3-540-89924-2  |2 doi 
050 4 |a TA345-345.5 
072 7 |a UGC  |2 bicssc 
072 7 |a COM007000  |2 bisacsh 
072 7 |a UGC  |2 thema 
082 0 4 |a 670.285  |2 23 
100 1 |a Celikyilmaz, Asli.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Modeling Uncertainty with Fuzzy Logic  |h [electronic resource] :  |b With Recent Theory and Applications /  |c by Asli Celikyilmaz, I. Burhan Türksen. 
250 |a 1st ed. 2009. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2009. 
300 |a XLVIII, 400 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Fuzziness and Soft Computing,  |x 1860-0808 ;  |v 240 
505 0 |a Fuzzy Sets and Systems -- Improved Fuzzy Clustering -- Fuzzy Functions Approach -- Modeling Uncertainty with Improved Fuzzy Functions -- Experiments -- Conclusions and Future Work. 
520 |a The objective of this book is to present an uncertainty modeling approach using a new type of fuzzy system model via "Fuzzy Functions". Since most researchers on fuzzy systems are more familiar with the standard fuzzy rule bases and their inference system structures, many standard tools of fuzzy system modeling approaches are reviewed to demonstrate the novelty of the structurally different fuzzy functions, before we introduced the new methodologies. To make the discussions more accessible, no special fuzzy logic and system modeling knowledge is assumed. Therefore, the book itself may be a reference for some related methodologies to most researchers on fuzzy systems analyses. For those readers, who have knowledge of essential fuzzy theories, Chapter 1, 2 should be treated as a review material. Advanced readers ought to be able to read chapters 3, 4 and 5 directly, where proposed methods are presented. Chapter 6 demonstrates experiments conducted on various datasets. 
650 0 |a Computer-aided engineering. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computer-Aided Engineering (CAD, CAE) and Design. 
650 2 4 |a Mathematical and Computational Engineering Applications. 
650 2 4 |a Artificial Intelligence. 
700 1 |a Türksen, I. Burhan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540899259 
776 0 8 |i Printed edition:  |z 9783642100635 
776 0 8 |i Printed edition:  |z 9783540899235 
830 0 |a Studies in Fuzziness and Soft Computing,  |x 1860-0808 ;  |v 240 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-89924-2  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)