Cargando…

Computational Intelligence in Integrated Airline Scheduling

An airline schedule represents the central planning element of each airline. In general, the objective of airline schedule optimization is to find the airline schedule that maximizes operating profit. This planning task is not only the most important but also the most complex task an airline is conf...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Grosche, Tobias (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:Studies in Computational Intelligence, 173
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-89887-0
003 DE-He213
005 20220115023917.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783540898870  |9 978-3-540-89887-0 
024 7 |a 10.1007/978-3-540-89887-0  |2 doi 
050 4 |a TA329-348 
050 4 |a TA345-345.5 
072 7 |a TBJ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a TBJ  |2 thema 
082 0 4 |a 620  |2 23 
100 1 |a Grosche, Tobias.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Computational Intelligence in Integrated Airline Scheduling  |h [electronic resource] /  |c by Tobias Grosche. 
250 |a 1st ed. 2009. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2009. 
300 |a XX, 250 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 173 
505 0 |a Airline Scheduling Process -- Foundations of Metaheuristics -- Integrated Airline Scheduling -- Summary, Conclusions, and Future Work. 
520 |a An airline schedule represents the central planning element of each airline. In general, the objective of airline schedule optimization is to find the airline schedule that maximizes operating profit. This planning task is not only the most important but also the most complex task an airline is confronted with. Until now, this task is performed by dividing the overall planning problem into smaller and less complex subproblems that are solved separately in a sequence. However, this procedure is only of minor capability to deal with interdependencies between the subproblems, resulting in less profitable schedules than those being possible with an approach solving the airline schedule optimization problem in one step. In this work, two planning approaches for integrated airline scheduling are presented. One approach follows the traditional sequential approach: existing models from literature for individual subproblems are implemented and enhanced in an overall iterative routine allowing to construct airline schedules from scratch. The other planning appraoch represents a truly simultaneous airline scheduling: using metaheuristics, airline schedules are processed and optimized at once without a separation into different optimization steps for its subproblems. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 0 |a Artificial intelligence. 
650 0 |a Industrial organization. 
650 0 |a Automotive engineering. 
650 1 4 |a Mathematical and Computational Engineering Applications. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Organization. 
650 2 4 |a Automotive Engineering. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642100598 
776 0 8 |i Printed edition:  |z 9783540898887 
776 0 8 |i Printed edition:  |z 9783540898863 
830 0 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 173 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-89887-0  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)