Cargando…

Endoscopy for GSp(4) and the Cohomology of Siegel Modular Threefolds

The geometry of modular curves and the structure of their cohomology groups have been a rich source for various number-theoretical applications over the last decades. Similar applications may be expected from the arithmetic of higher dimensional modular varieties. For Siegel modular threefolds some...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Weissauer, Rainer (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:Lecture Notes in Mathematics, 1968
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-89306-6
003 DE-He213
005 20220117021210.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783540893066  |9 978-3-540-89306-6 
024 7 |a 10.1007/978-3-540-89306-6  |2 doi 
050 4 |a QA331.7 
072 7 |a PBKD  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBKD  |2 thema 
082 0 4 |a 515.9  |2 23 
100 1 |a Weissauer, Rainer.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Endoscopy for GSp(4) and the Cohomology of Siegel Modular Threefolds  |h [electronic resource] /  |c by Rainer Weissauer. 
250 |a 1st ed. 2009. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2009. 
300 |a XVIII, 374 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 1968 
505 0 |a An Application of the Hard Lefschetz Theorem -- CAP-Localization -- The Ramanujan Conjecture for Genus two Siegel modular Forms -- Character identities and Galois representations related to the group GSp(4) -- Local and Global Endoscopy for GSp(4) -- A special Case of the Fundamental Lemma I -- A special Case of the Fundamental Lemma II -- The Langlands-Shelstad transfer factor -- Fundamental lemma (twisted case) -- Reduction to unit elements -- Appendix on Galois cohomology -- Appendix on Double Cosets. 
520 |a The geometry of modular curves and the structure of their cohomology groups have been a rich source for various number-theoretical applications over the last decades. Similar applications may be expected from the arithmetic of higher dimensional modular varieties. For Siegel modular threefolds some basic results on their cohomology groups are derived in this book from considering topological trace formulas. 
650 0 |a Functions of complex variables. 
650 0 |a Geometry. 
650 0 |a Number theory. 
650 0 |a Manifolds (Mathematics). 
650 1 4 |a Functions of a Complex Variable. 
650 2 4 |a Geometry. 
650 2 4 |a Number Theory. 
650 2 4 |a Several Complex Variables and Analytic Spaces. 
650 2 4 |a Manifolds and Cell Complexes. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540893592 
776 0 8 |i Printed edition:  |z 9783540893059 
830 0 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 1968 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-89306-6  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)