Cargando…

Motivated Reinforcement Learning Curious Characters for Multiuser Games /

Motivated learning is an emerging research field in artificial intelligence and cognitive modelling. Computational models of motivation extend reinforcement learning to adaptive, multitask learning in complex, dynamic environments - the goal being to understand how machines can develop new skills an...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Merrick, Kathryn E. (Autor), Maher, Mary Lou (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Temas:
Acceso en línea:Texto Completo
Tabla de Contenidos:
  • Non-Player Characters and Reinforcement Learning
  • Non-Player Characters in Multiuser Games
  • Motivation in Natural and Artificial Agents
  • Towards Motivated Reinforcement Learning
  • Comparing the Behaviour of Learning Agents
  • Developing Curious Characters Using Motivated Reinforcement Learning
  • Curiosity, Motivation and Attention Focus
  • Motivated Reinforcement Learning Agents
  • Curious Characters in Games
  • Curious Characters for Multiuser Games
  • Curious Characters for Games in Complex, Dynamic Environments
  • Curious Characters for Games in Second Life
  • Future
  • Towards the Future.