Cargando…

Mining Complex Data

The aim of this book is to gather the most recent works that address issues related to the concept of mining complex data. The whole knowledge discovery process being involved, our goal is to provide researchers dealing with each step of this process by key entries. Actually, managing complex data w...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Zighed, Djamel A. (Editor ), Tsumoto, Shusaku (Editor ), Ras, Zbigniew W. (Editor ), Hacid, Hakim (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:Studies in Computational Intelligence, 165
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-88067-7
003 DE-He213
005 20220116215924.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783540880677  |9 978-3-540-88067-7 
024 7 |a 10.1007/978-3-540-88067-7  |2 doi 
050 4 |a TA329-348 
050 4 |a TA345-345.5 
072 7 |a TBJ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a TBJ  |2 thema 
082 0 4 |a 620  |2 23 
245 1 0 |a Mining Complex Data  |h [electronic resource] /  |c edited by Djamel A. Zighed, Shusaku Tsumoto, Zbigniew W. Ras, Hakim Hacid. 
250 |a 1st ed. 2009. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2009. 
300 |a XII, 302 p. 114 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 165 
505 0 |a General Aspects of Complex Data -- Using Layout Data for the Analysis of Scientific Literature -- Extracting a Fuzzy System by Using Genetic Algorithms for Imbalanced Datasets Classification: Application on Down's Syndrome Detection -- A Hybrid Approach of Boosting Against Noisy Data -- Dealing with Missing Values in a Probabilistic Decision Tree during Classification -- Kernel-Based Algorithms and Visualization for Interval Data Mining -- Rules Extraction -- Evaluating Learning Algorithms Composed by a Constructive Meta-learning Scheme for a Rule Evaluation Support Method -- Mining Statistical Association Rules to Select the Most Relevant Medical Image Features -- From Sequence Mining to Multidimensional Sequence Mining -- Tree-Based Algorithms for Action Rules Discovery -- Graph Data Mining -- Indexing Structure for Graph-Structured Data -- Full Perfect Extension Pruning for Frequent Subgraph Mining -- Parallel Algorithm for Enumerating Maximal Cliques in Complex Network -- Community Finding of Scale-Free Network: Algorithm and Evaluation Criterion -- The k-Dense Method to Extract Communities from Complex Networks -- Data Clustering -- Efficient Clustering for Orders -- Exploring Validity Indices for Clustering Textual Data. 
520 |a The aim of this book is to gather the most recent works that address issues related to the concept of mining complex data. The whole knowledge discovery process being involved, our goal is to provide researchers dealing with each step of this process by key entries. Actually, managing complex data within the KDD process implies to work on every step, starting from the pre-processing (e.g. structuring and organizing) to the visualization and interpretation (e.g. sorting or filtering) of the results, via the data mining methods themselves (e.g. classification, clustering, frequent patterns extraction, etc.). The papers presented here are selected from the workshop papers held yearly since 2006. The book is composed of four parts and a total of sixteen chapters. Part I gives a general view of complex data mining by illustrating some situations and the related complexity. It contains five chapters. Chapter 1 illustrates the problem of analyzing the scientific literature. The chapter gives some background to the various techniques in this area, explains the necessary pre-processing steps involved, and presents two case studies, one from image mining and one from table identification. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 0 |a Artificial intelligence. 
650 1 4 |a Mathematical and Computational Engineering Applications. 
650 2 4 |a Artificial Intelligence. 
700 1 |a Zighed, Djamel A.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Tsumoto, Shusaku.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Ras, Zbigniew W.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Hacid, Hakim.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642099809 
776 0 8 |i Printed edition:  |z 9783540881704 
776 0 8 |i Printed edition:  |z 9783540880660 
830 0 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 165 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-88067-7  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)