Cargando…

Multi-Objective Memetic Algorithms

The application of sophisticated evolutionary computing approaches for solving complex problems with multiple conflicting objectives in science and engineering have increased steadily in the recent years. Within this growing trend, Memetic algorithms are, perhaps, one of the most successful stories,...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Goh, Chi-Keong (Editor ), Ong, Yew-Soon (Editor ), Tan, Kay Chen (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:Studies in Computational Intelligence, 171
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-88051-6
003 DE-He213
005 20220118053629.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783540880516  |9 978-3-540-88051-6 
024 7 |a 10.1007/978-3-540-88051-6  |2 doi 
050 4 |a TA329-348 
050 4 |a TA345-345.5 
072 7 |a TBJ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a TBJ  |2 thema 
082 0 4 |a 620  |2 23 
245 1 0 |a Multi-Objective Memetic Algorithms  |h [electronic resource] /  |c edited by Chi-Keong Goh, Yew-Soon Ong, Kay Chen Tan. 
250 |a 1st ed. 2009. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2009. 
300 |a XII, 404 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 171 
505 0 |a Evolutionary Multi-Multi-Objective Optimization - EMMOO -- Implementation of Multiobjective Memetic Algorithms for Combinatorial Optimization Problems: A Knapsack Problem Case Study -- Knowledge Infused in Design of Problem-Specific Operators -- Solving Time-Tabling Problems Using Evolutionary Algorithms and Heuristics Search -- An Efficient Genetic Algorithm with Uniform Crossover for the Multi-Objective Airport Gate Assignment Problem -- Application of Evolutionary Algorithms for Solving Multi-Objective Simulation Optimization Problems -- Feature Selection Using Single/Multi-Objective Memetic Frameworks -- Multi-Objective Robust Optimization Assisted by Response Surface Approximation and Visual Data-Mining -- Multiobjective Metamodel-Assisted Memetic Algorithms -- A Convergence Acceleration Technique for Multiobjective Optimisation -- Knowledge Propagation through Cultural Evolution -- Risk and Cost Tradeoff in Economic Dispatch Including Wind Power Penetration Based on Multi-Objective Memetic Particle Swarm Optimization -- Hybrid Behavioral-Based Multiobjective Space Trajectory Optimization -- Nature-Inspired Particle Mechanics Algorithm for Multi-Objective Optimization -- Information Exploited for Local Improvement -- Combination of Genetic Algorithms and Evolution Strategies with Self-adaptive Switching -- Comparison between MOEA/D and NSGA-II on the Multi-Objective Travelling Salesman Problem -- Integrating Cross-Dominance Adaptation in Multi-Objective Memetic Algorithms -- A Memetic Algorithm for Dynamic Multiobjective Optimization -- A Memetic Coevolutionary Multi-Objective Differential Evolution Algorithm -- Multiobjective Memetic Algorithm and Its Application in Robust Airfoil Shape Optimization. 
520 |a The application of sophisticated evolutionary computing approaches for solving complex problems with multiple conflicting objectives in science and engineering have increased steadily in the recent years. Within this growing trend, Memetic algorithms are, perhaps, one of the most successful stories, having demonstrated better efficacy in dealing with multi-objective problems as compared to its conventional counterparts. Nonetheless, researchers are only beginning to realize the vast potential of multi-objective Memetic algorithm and there remain many open topics in its design. This book presents a very first comprehensive collection of works, written by leading researchers in the field, and reflects the current state-of-the-art in the theory and practice of multi-objective Memetic algorithms. "Multi-Objective Memetic algorithms" is organized for a wide readership and will be a valuable reference for engineers, researchers, senior undergraduates and graduate students who are interested in the areas of Memetic algorithms and multi-objective optimization. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 0 |a Artificial intelligence. 
650 1 4 |a Mathematical and Computational Engineering Applications. 
650 2 4 |a Artificial Intelligence. 
700 1 |a Goh, Chi-Keong.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Ong, Yew-Soon.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Tan, Kay Chen.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540881674 
776 0 8 |i Printed edition:  |z 9783642099786 
776 0 8 |i Printed edition:  |z 9783540880509 
830 0 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 171 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-88051-6  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)