Cargando…

Structure in Complex Networks

In the modern world of gigantic datasets, which scientists and practioners of all fields of learning are confronted with, the availability of robust, scalable and easy-to-use methods for pattern recognition and data mining are of paramount importance, so as to be able to cope with the avalanche of d...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Reichardt, Jörg (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:Lecture Notes in Physics, 766
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-87833-9
003 DE-He213
005 20220114204259.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783540878339  |9 978-3-540-87833-9 
024 7 |a 10.1007/978-3-540-87833-9  |2 doi 
050 4 |a QA75.5-76.95 
072 7 |a UYA  |2 bicssc 
072 7 |a COM014000  |2 bisacsh 
072 7 |a UYA  |2 thema 
082 0 4 |a 004.0151  |2 23 
100 1 |a Reichardt, Jörg.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Structure in Complex Networks  |h [electronic resource] /  |c by Jörg Reichardt. 
250 |a 1st ed. 2009. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2009. 
300 |a XIII, 151 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Physics,  |x 1616-6361 ;  |v 766 
505 0 |a to Complex Networks -- Standard Approaches to Network Structure: Block Modeling -- A First Principles Approach to Block Structure Detection -- Diagonal Block Models as Cohesive Groups -- Modularity of Dense Random Graphs -- Modularity of Sparse Random Graphs -- Applications -- Conclusion and Outlook. 
520 |a In the modern world of gigantic datasets, which scientists and practioners of all fields of learning are confronted with, the availability of robust, scalable and easy-to-use methods for pattern recognition and data mining are of paramount importance, so as to be able to cope with the avalanche of data in a meaningful way. This concise and pedagogical research monograph introduces the reader to two specific aspects - clustering techniques and dimensionality reduction - in the context of complex network analysis. The first chapter provides a short introduction into relevant graph theoretical notation; chapter 2 then reviews and compares a number of cluster definitions from different fields of science. In the subsequent chapters, a first-principles approach to graph clustering in complex networks is developed using methods from statistical physics and the reader will learn, that even today, this field significantly contributes to the understanding and resolution of the related statistical inference issues. Finally, an application chapter examines real-world networks from the economic realm to show how the network clustering process can be used to deal with large, sparse datasets where conventional analyses fail. 
650 0 |a Computer science. 
650 0 |a Algorithms. 
650 0 |a Artificial intelligence. 
650 0 |a System theory. 
650 0 |a Econometrics. 
650 0 |a Mathematical physics. 
650 1 4 |a Theory of Computation. 
650 2 4 |a Algorithms. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Complex Systems. 
650 2 4 |a Quantitative Economics. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642099656 
776 0 8 |i Printed edition:  |z 9783540879282 
776 0 8 |i Printed edition:  |z 9783540878322 
830 0 |a Lecture Notes in Physics,  |x 1616-6361 ;  |v 766 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-87833-9  |z Texto Completo 
912 |a ZDB-2-PHA 
912 |a ZDB-2-SXP 
912 |a ZDB-2-LNP 
950 |a Physics and Astronomy (SpringerNature-11651) 
950 |a Physics and Astronomy (R0) (SpringerNature-43715)