|
|
|
|
LEADER |
00000nam a22000005i 4500 |
001 |
978-3-540-85964-2 |
003 |
DE-He213 |
005 |
20220114212705.0 |
007 |
cr nn 008mamaa |
008 |
100301s2009 gw | s |||| 0|eng d |
020 |
|
|
|a 9783540859642
|9 978-3-540-85964-2
|
024 |
7 |
|
|a 10.1007/978-3-540-85964-2
|2 doi
|
050 |
|
4 |
|a QA273.A1-274.9
|
072 |
|
7 |
|a PBT
|2 bicssc
|
072 |
|
7 |
|a PBWL
|2 bicssc
|
072 |
|
7 |
|a MAT029000
|2 bisacsh
|
072 |
|
7 |
|a PBT
|2 thema
|
072 |
|
7 |
|a PBWL
|2 thema
|
082 |
0 |
4 |
|a 519.2
|2 23
|
100 |
1 |
|
|a Siegert, Wolfgang.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
245 |
1 |
0 |
|a Local Lyapunov Exponents
|h [electronic resource] :
|b Sublimiting Growth Rates of Linear Random Differential Equations /
|c by Wolfgang Siegert.
|
250 |
|
|
|a 1st ed. 2009.
|
264 |
|
1 |
|a Berlin, Heidelberg :
|b Springer Berlin Heidelberg :
|b Imprint: Springer,
|c 2009.
|
300 |
|
|
|a IX, 254 p.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Lecture Notes in Mathematics,
|x 1617-9692 ;
|v 1963
|
505 |
0 |
|
|a Linear differential systems with parameter excitation -- Locality and time scales of the underlying non-degenerate stochastic system: Freidlin-Wentzell theory -- Exit probabilities for degenerate systems -- Local Lyapunov exponents.
|
520 |
|
|
|a Establishing a new concept of local Lyapunov exponents the author brings together two separate theories, namely Lyapunov exponents and the theory of large deviations. Specifically, a linear differential system is considered which is controlled by a stochastic process that during a suitable noise-intensity-dependent time is trapped near one of its so-called metastable states. The local Lyapunov exponent is then introduced as the exponential growth rate of the linear system on this time scale. Unlike classical Lyapunov exponents, which involve a limit as time increases to infinity in a fixed system, here the system itself changes as the noise intensity converges, too.
|
650 |
|
0 |
|a Probabilities.
|
650 |
|
0 |
|a Dynamical systems.
|
650 |
|
0 |
|a Differential equations.
|
650 |
|
0 |
|a Global analysis (Mathematics).
|
650 |
|
0 |
|a Manifolds (Mathematics).
|
650 |
|
0 |
|a Game theory.
|
650 |
|
0 |
|a Population genetics.
|
650 |
1 |
4 |
|a Probability Theory.
|
650 |
2 |
4 |
|a Dynamical Systems.
|
650 |
2 |
4 |
|a Differential Equations.
|
650 |
2 |
4 |
|a Global Analysis and Analysis on Manifolds.
|
650 |
2 |
4 |
|a Game Theory.
|
650 |
2 |
4 |
|a Population Genetics.
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer Nature eBook
|
776 |
0 |
8 |
|i Printed edition:
|z 9783540873754
|
776 |
0 |
8 |
|i Printed edition:
|z 9783540859635
|
830 |
|
0 |
|a Lecture Notes in Mathematics,
|x 1617-9692 ;
|v 1963
|
856 |
4 |
0 |
|u https://doi.uam.elogim.com/10.1007/978-3-540-85964-2
|z Texto Completo
|
912 |
|
|
|a ZDB-2-SMA
|
912 |
|
|
|a ZDB-2-SXMS
|
912 |
|
|
|a ZDB-2-LNM
|
950 |
|
|
|a Mathematics and Statistics (SpringerNature-11649)
|
950 |
|
|
|a Mathematics and Statistics (R0) (SpringerNature-43713)
|