Cargando…

Local Lyapunov Exponents Sublimiting Growth Rates of Linear Random Differential Equations /

Establishing a new concept of local Lyapunov exponents the author brings together two separate theories, namely Lyapunov exponents and the theory of large deviations. Specifically, a linear differential system is considered which is controlled by a stochastic process that during a suitable noise-int...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Siegert, Wolfgang (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:Lecture Notes in Mathematics, 1963
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-85964-2
003 DE-He213
005 20220114212705.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783540859642  |9 978-3-540-85964-2 
024 7 |a 10.1007/978-3-540-85964-2  |2 doi 
050 4 |a QA273.A1-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Siegert, Wolfgang.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Local Lyapunov Exponents  |h [electronic resource] :  |b Sublimiting Growth Rates of Linear Random Differential Equations /  |c by Wolfgang Siegert. 
250 |a 1st ed. 2009. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2009. 
300 |a IX, 254 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 1963 
505 0 |a Linear differential systems with parameter excitation -- Locality and time scales of the underlying non-degenerate stochastic system: Freidlin-Wentzell theory -- Exit probabilities for degenerate systems -- Local Lyapunov exponents. 
520 |a Establishing a new concept of local Lyapunov exponents the author brings together two separate theories, namely Lyapunov exponents and the theory of large deviations. Specifically, a linear differential system is considered which is controlled by a stochastic process that during a suitable noise-intensity-dependent time is trapped near one of its so-called metastable states. The local Lyapunov exponent is then introduced as the exponential growth rate of the linear system on this time scale. Unlike classical Lyapunov exponents, which involve a limit as time increases to infinity in a fixed system, here the system itself changes as the noise intensity converges, too. 
650 0 |a Probabilities. 
650 0 |a Dynamical systems. 
650 0 |a Differential equations. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 0 |a Game theory. 
650 0 |a Population genetics. 
650 1 4 |a Probability Theory. 
650 2 4 |a Dynamical Systems. 
650 2 4 |a Differential Equations. 
650 2 4 |a Global Analysis and Analysis on Manifolds. 
650 2 4 |a Game Theory. 
650 2 4 |a Population Genetics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540873754 
776 0 8 |i Printed edition:  |z 9783540859635 
830 0 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 1963 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-85964-2  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)