Cargando…

Mechanics of non-holonomic systems A New Class of control systems /

A general approach to the derivation of equations of motion of as holonomic, as nonholonomic systems with the constraints of any order is suggested. The system of equations of motion in the generalized coordinates is regarded as a one vector relation, represented in a space tangential to a manifold...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Soltakhanov, Sh.Kh (Autor), Yushkov, Mikhail (Autor), Zegzhda, S. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:Foundations of Engineering Mechanics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-540-85847-8
003 DE-He213
005 20220120205540.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 |a 9783540858478  |9 978-3-540-85847-8 
024 7 |a 10.1007/978-3-540-85847-8  |2 doi 
050 4 |a TA349-359 
072 7 |a TGB  |2 bicssc 
072 7 |a TEC009070  |2 bisacsh 
072 7 |a TGB  |2 thema 
082 0 4 |a 620.1  |2 23 
100 1 |a Soltakhanov, Sh.Kh.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Mechanics of non-holonomic systems  |h [electronic resource] :  |b A New Class of control systems /  |c by Sh.Kh Soltakhanov, Mikhail Yushkov, S. Zegzhda. 
250 |a 1st ed. 2009. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2009. 
300 |a XXXII, 332 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Foundations of Engineering Mechanics,  |x 1860-6237 
505 0 |a Holonomic Systems -- Nonholonomic Systems -- Linear Transformation Of Forces -- Application Of A Tangent Space To The Study Of Constrained Motion -- The Mixed Problem Of Dynamics. New Class Of Control Problems -- Application Of The Lagrange Multipliers To The Construction Of Three New Methods For The Study Of Mechanical Systems -- Equations Of Motion In Quasicoordinates. 
520 |a A general approach to the derivation of equations of motion of as holonomic, as nonholonomic systems with the constraints of any order is suggested. The system of equations of motion in the generalized coordinates is regarded as a one vector relation, represented in a space tangential to a manifold of all possible positions of system at given instant. The tangential space is partitioned by the equations of constraints into two orthogonal subspaces. In one of them for the constraints up to the second order, the motion low is given by the equations of constraints and in the other one for ideal constraints, it is described by the vector equation without reactions of connections. In the whole space the motion low involves Lagrangian multipliers. It is shown that for the holonomic and nonholonomic constraints up to the second order, these multipliers can be found as the function of time, positions of system, and its velocities. The application of Lagrangian multipliers for holonomic systems permits us to construct a new method for determining the eigenfrequencies and eigenforms of oscillations of elastic systems and also to suggest a special form of equations for describing the system of motion of rigid bodies. The nonholonomic constraints, the order of which is greater than two, are regarded as programming constraints such that their validity is provided due to the existence of generalized control forces, which are determined as the functions of time. The closed system of differential equations, which makes it possible to find as these control forces, as the generalized Lagrange coordinates, is compound. The theory suggested is illustrated by the examples of a spacecraft motion. The book is primarily addressed to specialists in analytic mechanics. 
650 0 |a Mechanics, Applied. 
650 0 |a Computational intelligence. 
650 0 |a Mechanics. 
650 1 4 |a Engineering Mechanics. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Classical Mechanics. 
700 1 |a Yushkov, Mikhail.  |e author.  |0 (orcid)0000-0002-3431-2905  |1 https://orcid.org/0000-0002-3431-2905  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Zegzhda, S.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783540858720 
776 0 8 |i Printed edition:  |z 9783642099380 
776 0 8 |i Printed edition:  |z 9783540858461 
830 0 |a Foundations of Engineering Mechanics,  |x 1860-6237 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-540-85847-8  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)